ω-Limit Set of a Tree Map

被引:1
|
作者
曾平凡
莫红
郭文旌
高文旌
机构
关键词
periodic point; ω-limit point; tree;
D O I
10.13447/j.1674-5647.2001.03.012
中图分类号
O192 [整体分析、流形上分析、突变理论];
学科分类号
070104 ; 0711 ; 071101 ;
摘要
Let T be a tree and f be a continuous map from T into itself. We show mainly in this paper that a point x of T is an w-limit point of f if and only if every open neighborhood of x in T contains at least nx + 1 points of some trajectory, where nx equals the number of connected components of T \ {x}. Then, for any open subset G w(f) in T, there exists a positive integer m = m(G) such that at most m points of any trajectory lie outside G.This result is a generalization of the related result for maps of the interval.
引用
收藏
页码:333 / 339
页数:7
相关论文
共 50 条
  • [31] Attractor, chain recurrent set and limit set of flow
    Zheng, Zuohuan
    Science in China Series A Mathematics, Physics, Astronomy, 2000, 43 (03): : 224 - 251
  • [32] Attractor, chain recurrent set and limit set of flow
    Zuohuan Zheng
    Science in China Series A: Mathematics, 2000, 43 : 244 - 251
  • [33] Attractor, chain recurrent set and limit set of flow
    郑作环
    Science China Mathematics, 2000, (03) : 244 - 251
  • [34] Attractor, chain recurrent set and limit set of flow
    Zheng, ZH
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2000, 43 (03): : 244 - 251
  • [35] On the postcritical set of a rational map
    DeMarco, Laura G.
    Koch, Sarah C.
    McMullen, Curtis T.
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 1 - 18
  • [36] Map Building for Forest Tree
    Xu, Zezhong
    Zhuang, Yanbin
    He, Zhongshen
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 8345 - 8348
  • [37] Logistic map graph set
    Sun, Haijian
    Liu, Lin
    Guo, Aike
    Computers and Graphics (Pergamon), 1997, 21 (01): : 89 - 103
  • [38] On the postcritical set of a rational map
    Laura G. DeMarco
    Sarah C. Koch
    Curtis T. McMullen
    Mathematische Annalen, 2020, 377 : 1 - 18
  • [39] THE PERIOD SET OF A MAP FROM THE CANTOR SET TO ITSELF
    Cannon, James W.
    Meilstrup, Mark H.
    Zastrow, Andreas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (07) : 2667 - 2679
  • [40] An absorbing set for the Chialvo map
    Pilarczyk, Pawel
    Graff, Grzegorz
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 132