Let T be a tree and f be a continuous map from T into itself. We show mainly in this paper that a point x of T is an w-limit point of f if and only if every open neighborhood of x in T contains at least nx + 1 points of some trajectory, where nx equals the number of connected components of T \ {x}. Then, for any open subset G w(f) in T, there exists a positive integer m = m(G) such that at most m points of any trajectory lie outside G.This result is a generalization of the related result for maps of the interval.
机构:
Univ Murcia, Fac Matemat, Dept Matemat, E-30001 Murcia, Region De Murci, SpainUniv Murcia, Fac Matemat, Dept Matemat, E-30001 Murcia, Region De Murci, Spain
Balibrea, Francisco
Guirao, Juan L. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Region De Murci, SpainUniv Murcia, Fac Matemat, Dept Matemat, E-30001 Murcia, Region De Murci, Spain