DEGENERATED HOMOCLINIC BIFURCATIONS WITH HIGHER DIMENSIONS

被引:0
|
作者
JIN YINLAI(Department of Mathematica
机构
基金
中国国家自然科学基金;
关键词
Local coordinates; Poincare map; Homoclinic orbit; Periodic orbit; 2-fold periodic orbit; Resonant condition;
D O I
暂无
中图分类号
O175.12 [定性理论];
学科分类号
070104 ;
摘要
The degenerated homoclinic bifurcation for high dimensional system is considered. The existence, uniqueness, and incoexistence of the 1-homclinic orbit and 1-periodic orbit near Г are studied under the nonresonant condition. Complicated bifurcation pattern is described under the resonant condition.
引用
收藏
页码:201 / 210
页数:10
相关论文
共 50 条
  • [41] The loop quantities and bifurcations of homoclinic loops
    Han, Maoan
    Zhu, Huaiping
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (02) : 339 - 359
  • [42] HOMOCLINIC AND HETEROCLINIC BIFURCATIONS IN RF SQUIDS
    BRUHN, B
    KOCH, BP
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1988, 43 (11): : 930 - 938
  • [43] Homoclinic bifurcations in reversible Hamiltonian systems
    Francisco, Gerson
    Fonseca, Andre
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (02) : 654 - 661
  • [44] Homoclinic Cycle Bifurcations in Planar Maps
    Kamiyama, Kyohei
    Komuro, Motomasa
    Aihara, Kazuyuki
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03):
  • [45] Shilnikov Saddle-Focus Homoclinic Orbits from Numerics: Higher Dimensions
    Coomes, Brian A.
    Kocak, Huseyin
    Palmer, Kenneth J.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (01) : 29 - 62
  • [46] Shilnikov Saddle-Focus Homoclinic Orbits from Numerics: Higher Dimensions
    Brian A. Coomes
    Hüseyin Koçak
    Kenneth J. Palmer
    [J]. Journal of Dynamics and Differential Equations, 2022, 34 : 29 - 62
  • [47] Homoclinic bifurcations of endomorphisms: The codimension one case
    Mora, L
    [J]. APPLIED MATHEMATICS LETTERS, 1998, 11 (06) : 81 - 86
  • [48] Predicting Homoclinic Bifurcations in Planar Autonomous Systems
    Mohamed Belhaq
    Faouzi Lakrad
    Abdelhak Fahsi
    [J]. Nonlinear Dynamics, 1999, 18 : 303 - 310
  • [49] On the number of limit cycles in double homoclinic bifurcations
    Han, M
    Chen, J
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (09): : 914 - 928
  • [50] SUBSIDIARY BIFURCATIONS NEAR BIFOCAL HOMOCLINIC ORBITS
    GLENDINNING, P
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 : 597 - 605