The loop quantities and bifurcations of homoclinic loops

被引:21
|
作者
Han, Maoan
Zhu, Huaiping [1 ]
机构
[1] York Univ, LAMPS LIAM, Dept Math & Stat, N York, ON M3J 1P3, Canada
[2] Shanghai Normal Univ, Dept Math, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
homoclinic loops; saddle quantities; limit cycles; stability; bifurcation;
D O I
10.1016/j.jde.2006.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stability and bifurcations of a homoclinic loop for planar vector fields are closely related to the limit cycles. For a homoclinic loop of a given planar vector field, a sequence of quantities, the homoclinic loop quantities were defined to study the stability and bifurcations of the loop. Among the sequence of the loop quantities, the first nonzero one determines the stability of the homoclinic loop. There are formulas for the first three and the fifth loop quantities. In this paper we will establish the formula for the fourth loop quantity for both the single and double homoclinic loops. As applications, we present examples of planar polynomial vector fields which can have five or twelve limit cycles respectively in the case of a single or double homoclinic loop by using the method of stability-switching. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:339 / 359
页数:21
相关论文
共 50 条
  • [1] Limit cycle bifurcations near homoclinic and heteroclinic loops via stability-changing of a homoclinic loop
    Xiong, Yanqin
    Han, Maoan
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 78 : 107 - 117
  • [2] BIFURCATIONS OF TWISTED HOMOCLINIC LOOPS FOR DEGENERATED CASES
    Jin YinlaiDept. of Math.
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2003, (02) : 186 - 192
  • [3] Bifurcations of twisted homoclinic loops for degenerated cases
    Yinlai Jin
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2003, 18 (2) : 186 - 192
  • [4] Bifurcations of Double Homoclinic Loops in Reversible Systems
    Bai, Yuzhen
    Liu, Xingbo
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (16):
  • [5] Codimension 2 bifurcations of double homoclinic loops
    Zhang, Weipeng
    Zhu, Deming
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 295 - 303
  • [6] Homoclinic loop bifurcations on a Mobius band
    Guimond, LS
    [J]. NONLINEARITY, 1999, 12 (01) : 59 - 78
  • [7] The Twisting Bifurcations of Double Homoclinic Loops with Resonant Eigenvalues
    Li, Xiaodong
    Zhang, Weipeng
    Geng, Fengjie
    Huang, Jicai
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [8] Bifurcations of twisted double homoclinic loops with resonant condition
    Jin, Yinlai
    Zhu, Man
    Li, Feng
    Xie, Dandan
    Zhang, Nana
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (10): : 5579 - 5620
  • [9] Bifurcations of resonant double homoclinic loops for higher dimensional systems
    Jin, Yinlai
    Xu, Han
    Gao, Yuerang
    Zhao, Xue
    Xie, Dandan
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2016, 16 (02): : 165 - 177
  • [10] Bifurcations and Stability of Nondegenerated Homoclinic Loops for Higher Dimensional Systems
    Jin, Yinlai
    Li, Feng
    Xu, Han
    Li, Jing
    Zhang, Liqun
    Ding, Benyan
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2013, 2013