Bifurcations of twisted double homoclinic loops with resonant condition

被引:2
|
作者
Jin, Yinlai [1 ]
Zhu, Man [1 ,2 ]
Li, Feng [1 ]
Xie, Dandan [1 ,2 ]
Zhang, Nana [1 ,2 ]
机构
[1] Linyi Univ, Sch Sci, Linyi 276005, Shandong, Peoples R China
[2] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Double homoclinic loops; twisted; resonance; bifurcation; higher dimensional system; 3-POINT-LOOP; STABILITY;
D O I
10.22436/jnsa.009.10.08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the bifurcation problems of twisted double homoclinic loops with resonant condition are studied for (m + n)-dimensional nonlinear dynamic systems. In the small tubular neighborhoods of the homoclinic orbits, the foundational solutions of the linear variational systems are selected as the local coordinate systems. The Poincare maps are constructed by using the composition of two maps, one is in the small tubular neighborhood of the homoclinic orbit, and another is in the small neighborhood of the equilibrium point of system. By the analysis of bifurcation equations, the existence, uniqueness and existence regions of the large homoclinic loops, large periodic orbits are obtained, respectively. Moreover, the corresponding bifurcation diagrams are given. (C) 2016 all rights reserved.
引用
收藏
页码:5579 / 5620
页数:42
相关论文
共 50 条
  • [1] The Twisting Bifurcations of Double Homoclinic Loops with Resonant Eigenvalues
    Li, Xiaodong
    Zhang, Weipeng
    Geng, Fengjie
    Huang, Jicai
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [2] Bifurcations of resonant double homoclinic loops for higher dimensional systems
    Jin, Yinlai
    Xu, Han
    Gao, Yuerang
    Zhao, Xue
    Xie, Dandan
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2016, 16 (02): : 165 - 177
  • [3] BIFURCATIONS OF TWISTED HOMOCLINIC LOOPS FOR DEGENERATED CASES
    Jin YinlaiDept. of Math.
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2003, (02) : 186 - 192
  • [4] Bifurcations of twisted homoclinic loops for degenerated cases
    Yinlai Jin
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2003, 18 (2) : 186 - 192
  • [5] Codimension 3 Nontwisted Double Homoclinic Loops Bifurcations with Resonant Eigenvalues
    Weipeng Zhang
    Deming Zhu
    Dan Liu
    [J]. Journal of Dynamics and Differential Equations, 2008, 20 : 893 - 908
  • [6] Codimension 3 Nontwisted Double Homoclinic Loops Bifurcations with Resonant Eigenvalues
    Zhang, Weipeng
    Zhu, Deming
    Liu, Dan
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) : 893 - 908
  • [7] Bifurcations of Double Homoclinic Loops in Reversible Systems
    Bai, Yuzhen
    Liu, Xingbo
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (16):
  • [8] Codimension 2 bifurcations of double homoclinic loops
    Zhang, Weipeng
    Zhu, Deming
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 295 - 303
  • [9] Codimension 2 bifurcation of twisted double homoclinic loops
    Lu, Qiuying
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (07) : 1127 - 1141
  • [10] Bifurcations of double homoclinic flip orbits with resonant eigenvalues
    张天四
    朱德明
    [J]. Applied Mathematics and Mechanics(English Edition), 2007, (11) : 1517 - 1526