Hubble parameter estimation via dark sirens with the LISA-Taiji network

被引:1
|
作者
Renjie Wang [1 ]
Wen-Hong Ruan [2 ,3 ]
Qing Yang [4 ]
Zong-Kuan Guo [2 ,3 ,5 ]
Rong-Gen Cai [2 ,3 ,5 ]
Bin Hu [1 ]
机构
[1] Department of Astronomy, Beijing Normal University
[2] CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences
[3] School of Physical Sciences, University of Chinese Academy of Sciences
[4] College of Engineering Physics, Shenzhen Technology University
[5] School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
P111.44 [射电望远镜(无线电望远镜)];
学科分类号
070401 ;
摘要
The Hubble parameter is one of the central parameters in modern cosmology,and describes the present expansion rate of the universe.The values of the parameter inferred from late-time observations are systematically higher than those inferred from early-time measurements by about 10%.To reach a robust conclusion,independent probes with accuracy at percent levels are crucial.Gravitational waves from compact binary coalescence events can be formulated into the standard siren approach to provide an independent Hubble parameter measurement.The future space-borne gravitational wave observatory network,such as the LISA-Taiji network,will be able to measure the gravitational wave signals in the millihertz bands with unprecedented accuracy.By including several statistical and instrumental noises,we show that,within a five-year operation time,the LISA-Taiji network is able to constrain the Hubble parameter within 1% accuracy,and possibly beats the scatters down to 0.5% or even better.
引用
收藏
页码:52 / 62
页数:11
相关论文
共 32 条
  • [21] Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens from Taiji
    Zhao, Ze-Wei
    Wang, Ling-Feng
    Zhang, Jing-Fei
    Zhang, Xin
    [J]. SCIENCE BULLETIN, 2020, 65 (16) : 1340 - 1348
  • [22] Nonparametric reconstruction of dynamical dark energy via observational Hubble parameter
    Yu, Hao-Ran
    Yuan, Shuo
    Zhang, Tong-Jie
    [J]. PHYSICAL REVIEW D, 2013, 88 (10):
  • [23] Parameter estimation of stellar mass binary black holes in the network of TianQin and LISA
    Lyu, Xiangyu
    Li, En-Kun
    Hu, Yi-Ming
    [J]. PHYSICAL REVIEW D, 2023, 108 (08)
  • [24] FOREST BIOPHYSICAL PARAMETER ESTIMATION VIA MACHINE LEARNING AND NEURAL NETWORK APPROACHES
    Aksoy, Samet
    Al Shwayyat, Shouq Zuhter Hasan
    Topgul, Sule Nur
    Sertel, Elif
    Unsalan, Cem
    Salo, Jari
    Holmstrom, Anton
    Wallerman, Jorgen
    Nilsson, Mats
    Fransson, Johan E. S.
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2661 - 2664
  • [25] Parameter estimation of distributed activation energy models via chemical reaction neural network
    Department of Information Technology, Nanjing Police University, Nanjing
    210046, China
    不详
    230027, China
    不详
    210044, China
    [J]. Combust. Flame, 2024,
  • [26] Resampling parameter estimation via dual-filtering based convolutional neural network
    Peng, Lin
    Liao, Xin
    Chen, Mingliang
    [J]. MULTIMEDIA SYSTEMS, 2021, 27 (03) : 363 - 370
  • [27] Neural network enhanced time-varying parameter estimation via weak measurement
    Li, Yue-Gang
    Song, Qi
    Xiao, Tai-Long
    Li, Hong-Jing
    Fan, Jian-Ping
    Zeng, Gui-Hua
    [J]. OPTICS EXPRESS, 2024, 32 (16): : 27358 - 27372
  • [28] Resampling parameter estimation via dual-filtering based convolutional neural network
    Lin Peng
    Xin Liao
    Mingliang Chen
    [J]. Multimedia Systems, 2021, 27 : 363 - 370
  • [29] Estimation of the Magnet Temperature via a Lumped Parameter Thermal Network in Real Time for the Control of PMSM
    Ramones, Anna, I
    Monissen, Christian
    Wang, Zixuan
    Andert, Jakob
    [J]. 2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 1192 - 1197
  • [30] GNN-SP: Fast S-Parameter Estimation of Chiplet Interconnect via Graph Neural Network
    Liu, Lihao
    Li, Yunhui
    Lu, Beisi
    Shang, Li
    Yang, Fan
    [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024, 14 (10): : 1862 - 1871