FOREST BIOPHYSICAL PARAMETER ESTIMATION VIA MACHINE LEARNING AND NEURAL NETWORK APPROACHES

被引:1
|
作者
Aksoy, Samet [1 ]
Al Shwayyat, Shouq Zuhter Hasan [2 ]
Topgul, Sule Nur [1 ]
Sertel, Elif [1 ]
Unsalan, Cem [2 ]
Salo, Jari [3 ]
Holmstrom, Anton [4 ]
Wallerman, Jorgen [5 ]
Nilsson, Mats [5 ]
Fransson, Johan E. S. [6 ]
机构
[1] Istanbul Tech Univ, Istanbul, Turkiye
[2] Marmara Univ, Istanbul, Turkiye
[3] Univ Helsinki, Helsinki, Finland
[4] Katam Technol, Lund, Sweden
[5] Swedish Univ Agr Sci, Uppsala, Sweden
[6] Linnaeus Univ, Vaxjo, Sweden
基金
芬兰科学院; 瑞典研究理事会;
关键词
Forest; map; global; machine learning; Artificial Intelligence;
D O I
10.1109/IGARSS52108.2023.10282899
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents the first results of the ongoing development of new forest mapping methods for the Swedish national forest mapping case using Airborne Laser Scanning (ALS) data, utilizing the recent findings in machine learning (ML) and Artificial Intelligence (AI) techniques. We used Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) as ML models. In addition, Neural networks (NN) based approaches were utilized in this study. ALS derived features were used to estimate the stem volume (V), above-ground biomass (AGB), basal area (B), tree height (H), stem diameter (D), and forest stand age (A). XGBoost ML algorithm outperformed RF 1 % to 3 % in the R-2 metric. NN model performed similar to ML model, however it is superior in the estimation of V, AGB, and B parameters.
引用
收藏
页码:2661 / 2664
页数:4
相关论文
共 50 条
  • [1] Parameter estimation via weak measurement with machine learning
    Liu, Wenhuan
    Huang, Jingzheng
    Li, Yanjia
    Li, Hongjing
    Fang, Chen
    Yu, Yang
    Zeng, Guihua
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (04)
  • [2] Machine learning approaches for underwater sensor network parameter prediction
    Uyan, Osman Gokhan
    Akbas, Ayhan
    Gungor, Vehbi Cagri
    AD HOC NETWORKS, 2023, 144
  • [3] Active Learning Methods for Biophysical Parameter Estimation
    Pasolli, Edoardo
    Melgani, Farid
    Alajlan, Naif
    Bazi, Yakoub
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10): : 4071 - 4084
  • [4] Biophysical Parameter Estimation With a Semisupervised Support Vector Machine
    Camps-Valls, Gustavo
    Munoz-Mari, Jordi
    Gomez-Chova, Luis
    Richter, Katja
    Calpe-Maravilla, Javier
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) : 248 - 252
  • [5] Machine learning for parameter estimation
    Kutz, J. Nathan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (12)
  • [6] Inversion of a lidar waveform model for forest biophysical parameter estimation
    Koetz, B
    Morsdorf, F
    Sun, G
    Ranson, KJ
    Itten, K
    Allgöwer, B
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) : 49 - 53
  • [7] Network Parameter Setting for Reinforcement Learning Approaches Using Neural Networks
    Yamada, Kazuaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2011, 15 (07) : 822 - 830
  • [8] Network parameter setting for reinforcement learning approaches using neural networks
    Yamada, Kazuaki
    Ohkura, Kazuhiro
    Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2012, 78 (792): : 2950 - 2961
  • [9] Machine learning approaches for biomolecular, biophysical, and biomaterials research
    Rickert, Carolin A.
    Lieleg, Oliver
    BIOPHYSICS REVIEWS, 2022, 3 (02):
  • [10] Combining Multisource Data and Machine Learning Approaches for Multiscale Estimation of Forest Biomass
    Hong, Yifeng
    Xu, Jiaming
    Wu, Chunyan
    Pang, Yong
    Zhang, Shougong
    Chen, Dongsheng
    Yang, Bo
    FORESTS, 2023, 14 (11):