Biophysical Parameter Estimation With a Semisupervised Support Vector Machine

被引:42
|
作者
Camps-Valls, Gustavo [1 ]
Munoz-Mari, Jordi [1 ]
Gomez-Chova, Luis [1 ]
Richter, Katja [2 ]
Calpe-Maravilla, Javier [1 ]
机构
[1] Univ Valencia, Escola Tecn Super Engn, Dept Elect Engn, E-46100 Valencia, Spain
[2] Univ Naples Federico II, Fac Agr, Dipartimento Ingn Agr & Agron Territorio, I-80055 Portici, Na, Italy
关键词
Biophysical parameter; estimation; graph; kernel method; regression; retrieval; semisupervised learning (SSL); support vector machine;
D O I
10.1109/LGRS.2008.2009077
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents two kernel-based methods for semisupervised regression. The methods rely on building a graph or hypergraph Laplacian with both the available labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). Given the high computational burden involved, we present two alternative formulations based on the Nystrom method and the incomplete Cholesky factorization to achieve operational processing times. The semisupervised SVR algorithms are successfully tested in multiplatform leaf area index estimation and oceanic chlorophyll concentration prediction. Experiments are carried out with both multispectral and hyperspectral data, demonstrating good generalization capabilities when a low number of labeled samples are available, which is usually the case in biophysical parameter retrieval.
引用
收藏
页码:248 / 252
页数:5
相关论文
共 50 条
  • [1] Semisupervised Gaussian Process Regression for Biophysical Parameter Estimation
    Bazi, Yakoub
    Melgani, Farid
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4248 - 4251
  • [2] Semisupervised Incremental Support Vector Machine Learning Based on Neighborhood Kernel Estimation
    Wang, Jing
    Yang, Daiwei
    Jiang, Wei
    Zhou, Jinglin
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (10): : 2677 - 2687
  • [3] A Semisupervised Feature Selection with Support Vector Machine
    Dai, Kun
    Yu, Hong-Yi
    Li, Qing
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [4] Kernel Path for Semisupervised Support Vector Machine
    Zhai, Zhou
    Huang, Heng
    Gu, Bin
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 1512 - 1522
  • [5] Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation
    Tuia, Devis
    Verrelst, Jochem
    Alonso, Luis
    Perez-Cruz, Fernando
    Camps-Valls, Gustavo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 804 - 808
  • [6] Semisupervised PSO-SVM regression for biophysical parameter estimation
    Bazi, Yakoub
    Melgani, Farid
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (06): : 1887 - 1895
  • [7] Semisupervised Least Squares Support Vector Machine
    Adankon, Mathias M.
    Cheriet, Mohamed
    Biem, Alain
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (12): : 1858 - 1870
  • [8] Support Vector Machine Polyhedral Separability in Semisupervised Learning
    Annabella Astorino
    Antonio Fuduli
    [J]. Journal of Optimization Theory and Applications, 2015, 164 : 1039 - 1050
  • [9] Support Vector Machine Polyhedral Separability in Semisupervised Learning
    Astorino, Annabella
    Fuduli, Antonio
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (03) : 1039 - 1050
  • [10] Driving Style Classification Using a Semisupervised Support Vector Machine
    Wang, Wenshuo
    Xi, Junqiang
    Chong, Alexandre
    Li, Lin
    [J]. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2017, 47 (05) : 650 - 660