Parameter estimation of stellar mass binary black holes in the network of TianQin and LISA

被引:5
|
作者
Lyu, Xiangyu [1 ,2 ]
Li, En-Kun [1 ,2 ]
Hu, Yi-Ming [1 ,2 ]
机构
[1] Sun Yat Sen Univ Zhuhai Campus, TianQin Res Ctr Gravitat Phys, MOE Key Lab TianQin Mission, Zhuhai 519082, Peoples R China
[2] Sun Yat Sen Univ Zhuhai Campus, Frontiers Sci Ctr TianQin Gravitat Wave Res Ctr C, Sch Phys & Astron, Zhuhai 519082, Peoples R China
关键词
GRAVITATIONAL-WAVE OBSERVATIONS; PULSATIONAL PAIR INSTABILITY; COMPACT BINARIES; MERGER; SPACE; EVOLUTION; STARS; LIGO; EMISSION; PHYSICS;
D O I
10.1103/PhysRevD.108.083023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a Bayesian parameter estimation progress to infer the stellar mass binary black hole properties by TianQin, LISA, and TianQin + LISA. Two typical stellar mass black hole binary systems, GW150914 and GW190521 are chosen as the fiducial sources. In this work, we establish the ability of TianQin to infer the parameters of those systems and first apply the full frequency response in TianQin's data analysis. We obtain the parameter estimation results and explain the correlation between them. We also find the TianQin + LISA could marginally increase the parameter estimation precision and narrow the 1 sigma area compared with TianQin and LISA individual observations. We finally demonstrate the importance of considering the effect of spin when the binaries have a nonzero component spin and great deviation will appear especially on mass, coalescence time, and sky location.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Exploring the Bayesian parameter estimation of binary black holes with LISA
    Marsat, Sylvain
    Baker, John G.
    Dal Canton, Tito
    [J]. PHYSICAL REVIEW D, 2021, 103 (08)
  • [2] Science with the TianQin observatory: Preliminary results on stellar-mass binary black holes
    Liu, Shuai
    Hu, Yi-Ming
    Zhang, Jian-dong
    Mei, Jianwei
    [J]. PHYSICAL REVIEW D, 2020, 101 (10)
  • [3] Archival searches for stellar-mass binary black holes in LISA data
    Ewing, Becca
    Sachdev, Surabhi
    Borhanian, Ssohrab
    Sathyaprakash, B. S.
    [J]. PHYSICAL REVIEW D, 2021, 103 (02)
  • [4] On detecting stellar binary black holes via the LISA-Taiji network
    Chen, Ju
    Yan, Chang-Shuo
    Lu, You-Jun
    Zhao, Yue-Tong
    Ge, Jun-Qiang
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2021, 21 (11)
  • [5] On detecting stellar binary black holes via the LISA-Taiji network
    陈举
    闫昌硕
    陆由俊
    赵悦同
    葛均强
    [J]. Research in Astronomy and Astrophysics, 2021, 21 (11) : 147 - 155
  • [6] Parameter estimation of stellar-mass black hole binaries with LISA
    Toubiana, Alexandre
    Marsat, Sylvain
    Babak, Stanislav
    Baker, John
    Dal Canton, Tito
    [J]. PHYSICAL REVIEW D, 2020, 102 (12)
  • [7] LISA parameter estimation of supermassive black holes
    Trias, Miquel
    Sintes, Alicia M.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (18)
  • [8] Deep learning for parameter estimation of supermassive binary black holes with simulated LISA data
    Tang, Qiao
    Yang, Nan
    Li, Jin
    [J]. CHINESE JOURNAL OF PHYSICS, 2024, 88 : 301 - 310
  • [9] Bayesian parameter estimation of stellar-mass black-hole binaries with LISA
    Buscicchio, Riccardo
    Klein, Antoine
    Roebber, Elinore
    Moore, Christopher J.
    Gerosa, Davide
    Finch, Eliot
    Vecchio, Alberto
    [J]. PHYSICAL REVIEW D, 2021, 104 (04)
  • [10] Stellar binary black holes in the LISA band: a new class of standard sirens
    Del Pozzo, Walter
    Sesana, Alberto
    Klein, Antoine
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (03) : 3485 - 3492