An asymmetric Orlicz centroid inequality for probability measures

被引:0
|
作者
HUANG QingZhong [1 ]
HE BinWu [1 ]
机构
[1] Department of Mathematics,Shanghai University
基金
中国国家自然科学基金;
关键词
M-addition; Orlicz centroid inequality; asymmetric Orlicz centroid bodies; asymmetric Lp centroid bodies;
D O I
暂无
中图分类号
O18 [几何、拓扑];
学科分类号
0701 ; 070101 ;
摘要
Using M-addition,an asymmetric Orlicz centroid inequality for absolutely continuous probability measures is established corresponding to Paouris and Pivovarov’s recent result on the symmetric case.As an application,we extend Haberl and Schuster’s asymmetric Lp centroid inequality from star bodies to compact sets.
引用
收藏
页码:1193 / 1202
页数:10
相关论文
共 50 条
  • [1] An asymmetric Orlicz centroid inequality for probability measures
    QingZhong Huang
    BinWu He
    Science China Mathematics, 2014, 57 : 1193 - 1202
  • [2] An asymmetric Orlicz centroid inequality for probability measures
    Huang QingZhong
    He BinWu
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (06) : 1193 - 1202
  • [3] The Orlicz centroid inequality for star bodies
    Zhu, Guangxian
    ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (02) : 432 - 445
  • [4] The Orlicz–Lorentz centroid inequality for star bodies*
    Zengle Zhang
    Monatshefte für Mathematik, 2023, 200 : 179 - 190
  • [5] A new proof of the Orlicz–Lorentz centroid inequality
    Fangwei Chen
    Congli Yang
    Journal of Inequalities and Applications, 2019
  • [6] A new proof of the Orlicz-Lorentz centroid inequality
    Chen, Fangwei
    Yang, Congli
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [7] On the reverse Orlicz–Lorentz Busemann–Petty centroid inequality
    Y. Feng
    T. Ma
    Acta Mathematica Hungarica, 2019, 159 : 211 - 228
  • [8] The Orlicz-Lorentz centroid inequality for star bodies*
    Zhang, Zengle
    MONATSHEFTE FUR MATHEMATIK, 2023, 200 (01): : 179 - 190
  • [9] On the reverse Orlicz Busemann-Petty centroid inequality
    Chen, Fangwei
    Zhou, Jiazu
    Yang, Congli
    ADVANCES IN APPLIED MATHEMATICS, 2011, 47 (04) : 820 - 828
  • [10] A NEW PROOF OF THE ORLICZ BUSEMANN-PETTY CENTROID INEQUALITY
    Li, Ai-Jun
    Leng, Gangsong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) : 1473 - 1481