?2 Decoupling for Certain Surfaces of Finite Type in R3

被引:1
|
作者
Zhuo Ran LI [1 ]
Ji Qiang ZHENG [2 ]
机构
[1] School of Mathematics and Statistics,Yancheng Teachers University
[2] Institute of Applied Physics and Computational Mathematics
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
O186.11 [古典微分几何];
学科分类号
摘要
In this article,we establish an l2decoupling inequality for the surface F42:={(ξ1,ξ2,ξ14+ξ24):(ξ1,ξ2)∈[0,1]2}associated with the decomposition adapted to finite type geometry from our previous work [Li,Z.,Miao,C.,Zheng,J.:A restriction estimate for a certain surface of finite type in R3.J.Fourier Anal.Appl.,27(4),Paper No.63,24 pp.(2021)].The key ingredients of the proof include the so-called generalized rescaling technique,an l2decoupling inequality for the surfaces{(ξ1,ξ2,φ1(ξl)+ξ24):(ξ1,ξ2)∈[0,1]2}with φ1being non-degenerate,reduction of dimension arguments and induction on scales.
引用
收藏
页码:1442 / 1458
页数:17
相关论文
共 50 条
  • [1] l2 Decoupling for Certain Surfaces of Finite Type in R3
    Li, Zhuo Ran
    Zheng, Ji Qiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (08) : 1442 - 1458
  • [2] ℓ2 Decoupling for Certain Surfaces of Finite Type in ℝ3
    Zhuo Ran Li
    Ji Qiang Zheng
    Acta Mathematica Sinica, English Series, 2023, 39 : 1442 - 1458
  • [3] A Restriction Estimate for a Certain Surface of Finite Type in R3
    Li, Zhuoran
    Miao, Changxing
    Zheng, Jiqiang
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (04)
  • [4] SURFACES IN R3
    SZUCS, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 : 60 - 66
  • [5] GEOMETRY ONE SPECIAL TYPE OF SURFACES IN R3
    Kanka, Milos
    Kankova, Eva
    INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2011, : 259 - 265
  • [6] Complete λ-surfaces in R3
    Cheng, Qing-Ming
    Wei, Guoxin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [7] REVOLUTION SURFACES IN R3
    BERARD, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (03): : 159 - 161
  • [8] Rigidity of certain polyhedra in R3
    Rodríguez, L
    Rosenberg, H
    COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) : 478 - 503
  • [9] FINITE TYPE ξ-ASYMPTOTIC LINES OF PLANE FIELDS IN R3
    da Cruz, Douglas H.
    Garcia, Ronaldo A.
    JOURNAL OF SINGULARITIES, 2020, 22 : 17 - 27
  • [10] MINIMAL SURFACES IN R3 PROPERLY PROJECTING INTO R2
    Alarcon, Antonio
    Lopez, Francisco J.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 90 (03) : 351 - 381