Rigidity of certain polyhedra in R3

被引:11
|
作者
Rodríguez, L
Rosenberg, H
机构
[1] Inst Matemat Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
[2] Univ Paris 07, Dept Math, F-75251 Paris 05, France
关键词
rigidity; polyhedron; convexity; Gauss map;
D O I
10.1007/s000140050137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the Cauchy theorem stating rigidity of convex polyhedra in R-3. We do not require that the polyhedron be convex nor embedded, only that the realization of the polyhedron in R-3 be linear and isometric on each face. We also extend the topology of the surfaces to include the projective plane in addition to the sphere. Our approach is to choose a convenient normal to each face in such a way that as we go around the star of a vertex the chosen normals are the vertices of a convex polygon on the unit sphere. When we can make such a choice at each vertex we obtain rigidity. For example, we can prove that the heptahedron is rigid.
引用
收藏
页码:478 / 503
页数:26
相关论文
共 50 条
  • [1] Line Transversals of Convex Polyhedra in R3
    Kaplan, Haim
    Rubin, Natan
    Sharir, Micha
    [J]. PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 170 - 179
  • [2] LINE TRANSVERSALS OF CONVEX POLYHEDRA IN R3
    Kaplan, Haim
    Rubin, Natan
    Sharir, Micha
    [J]. SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 3283 - 3310
  • [3] An analogue of a theorem of Steinitz for ball polyhedra in R3
    Almohammad, Sami Mezal
    Langi, Zsolt
    Naszodi, Marton
    [J]. AEQUATIONES MATHEMATICAE, 2022, 96 (02) : 403 - 415
  • [4] A single cell in an arrangement of convex polyhedra in R3
    Ezra, Esther
    Sharir, Micha
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) : 21 - 41
  • [5] CERTAIN ROLLINGS OF DIMENSION 1 OF R3
    SEC, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (06): : 351 - &
  • [6] On the complements of 3-dimensional convex polyhedra as polynomial images of R3
    Fernando, Jose F.
    Ueno, Carlos
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (07)
  • [7] On the Topological Rigidity of Compact Self-shrinkers in R3
    Mramor, Alexander
    Wang, Shengwen
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (07) : 1933 - 1941
  • [8] Convex polyhedra in R3 spanning Ω(n4/3) congruent triangles
    Abrego, BM
    Fernández-Merchant, S
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 98 (02) : 406 - 409
  • [9] A RIGIDITY THEOREM FOR PROPERLY EMBEDDED MINIMAL-SURFACES IN R3
    CHOI, HI
    MEEKS, WH
    WHITE, B
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 32 (01) : 65 - 76
  • [10] ON BIFURCATION AND LOCAL RIGIDITY OF TRIPLY PERIODIC MINIMAL SURFACES IN R3
    Koiso, Miyuki
    Piccione, Paolo
    Shoda, Toshihiro
    [J]. ANNALES DE L INSTITUT FOURIER, 2018, 68 (06) : 2743 - 2778