MINIMAL SURFACES IN R3 PROPERLY PROJECTING INTO R2

被引:0
|
作者
Alarcon, Antonio [1 ]
Lopez, Francisco J. [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
UNIFORM APPROXIMATION; CONJECTURES; EXISTENCE; TOPOLOGY; CURVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For all open Riemann surface N and real number theta is an element of (0, pi/2), we construct a conformal minimal immersion X = (X-1, X-2, X-3) : If N -> R-3 such that X-3 +tan(theta)vertical bar X-1 vertical bar : N -> R is positive and proper. Furthermore, X can be chosen with an arbitrarily prescribed flux map. Moreover, we produce properly immersed hyperbolic minimal surfaces with non-empty boundary in R-3 lying above a negative sublinear graph.
引用
收藏
页码:351 / 381
页数:31
相关论文
共 50 条