Complete properly embedded minimal surfaces in R3

被引:11
|
作者
Colding, TH
Minicozzi, WP
机构
[1] Courant Inst Math Sci, New York, NY 10012 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
D O I
10.1215/S0012-7094-01-10726-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short paper we apply estimates and ideas from [CM4] to study the ends of a properly embedded complete minimal surface Sigma (2) subset of R-3 with finite topology. The main result is that any complete properly embedded minimal annulus that lies above a sufficiently narrow downward sloping cone must have finite total curvature.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 50 条
  • [1] A RIGIDITY THEOREM FOR PROPERLY EMBEDDED MINIMAL-SURFACES IN R3
    CHOI, HI
    MEEKS, WH
    WHITE, B
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 32 (01) : 65 - 76
  • [2] SOME RECENT DEVELOPMENTS IN THE THEORY OF PROPERLY EMBEDDED MINIMAL-SURFACES IN R3
    ROSENBERG, H
    [J]. ASTERISQUE, 1992, (206) : 463 - 535
  • [3] MINIMAL SURFACES IN R3 PROPERLY PROJECTING INTO R2
    Alarcon, Antonio
    Lopez, Francisco J.
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 90 (03) : 351 - 381
  • [4] Complete Embedded Harmonic Surfaces in R3
    Connor, Peter
    Li, Kevin
    Weber, Matthias
    [J]. EXPERIMENTAL MATHEMATICS, 2015, 24 (02) : 196 - 224
  • [5] Complete Laguerre minimal surfaces in R3
    Aledo, Juan A.
    Galvez, Jose A.
    Lozano, Victorino
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 92 : 1 - 12
  • [6] Mean convex properly embedded [φ, (e)over-right-arrow3]-minimal surfaces in R3
    Martinez, Antonio
    Martinez-Trivino, Antonio Luis
    dos Santos, Joao Paulo
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (04) : 1349 - 1370
  • [7] Complete nonorientable minimal surfaces in a ball of R3
    Lopez, F. J.
    Martin, Francisco
    Morales, Santiago
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (09) : 3807 - 3820
  • [8] Density theorems for complete minimal surfaces in R3
    Alarcon, Antonio
    Ferrer, Leonor
    Martin, Francisco
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (01) : 1 - 49
  • [9] STABLE COMPLETE MINIMAL SURFACES IN R3 ARE PLANES
    DOCARMO, M
    PENG, CK
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06): : 903 - 906
  • [10] COMPLETE NONORIENTABLE MINIMAL-SURFACES IN R3
    ROSS, M
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (01) : 64 - 76