ℓ2 Decoupling for Certain Surfaces of Finite Type in ℝ3

被引:0
|
作者
Zhuo Ran Li
Ji Qiang Zheng
机构
[1] Yancheng Teachers University,School of Mathematics and Statistics
[2] Institute of Applied Physics and Computational Mathematics,undefined
关键词
Decoupling inequality; finite type; reduction of dimension arguments; induction on scales; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we establish an ℓ2 decoupling inequality for the surface F42:={(ξ1,ξ2,ξ14+ξ24):(ξ1,ξ2)∈[0,1]2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_4^2: = \{ ({\xi _1},{\xi _2},\xi _1^4 + \xi _2^4):({\xi _1},{\xi _2}) \in {[0,1]^2}\} $$\end{document} associated with the decomposition adapted to finite type geometry from our previous work [Li, Z., Miao, C., Zheng, J.: A restriction estimate for a certain surface of finite type in ℝ3. J. Fourier Anal. Appl., 27(4), Paper No. 63, 24 pp. (2021)]. The key ingredients of the proof include the so-called generalized rescaling technique, an ℓ2 decoupling inequality for the surfaces {(ξ1,ξ2,ϕ1(ξ1)+ξ24):(ξ1,ξ2)∈[0,1]2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ ({\xi _1},{\xi _2},{\phi _1}({\xi _1}) + \xi _2^4):({\xi _1},{\xi _2}) \in {[0,1]^2}\} $$\end{document} with ϕ1 being non-degenerate, reduction of dimension arguments and induction on scales.
引用
收藏
页码:1442 / 1458
页数:16
相关论文
共 50 条
  • [1] ?2 Decoupling for Certain Surfaces of Finite Type in R3
    Zhuo Ran LI
    Ji Qiang ZHENG
    Acta Mathematica Sinica,English Series, 2023, (08) : 1442 - 1458
  • [2] l2 Decoupling for Certain Surfaces of Finite Type in R3
    Li, Zhuo Ran
    Zheng, Ji Qiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (08) : 1442 - 1458
  • [3] Decoupling for certain quadratic surfaces of low co-dimensions
    Guo, Shaoming
    Zorin-Kranich, Pavel
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (01): : 319 - 344
  • [4] Bryant surfaces in H3 of finite type
    Daniel, B
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (07): : 581 - 594
  • [5] Translation surfaces of finite type in Sol3
    Senoussi, Bendehiba
    Al-Zoubi, Hassan
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2020, 61 (02): : 237 - 256
  • [6] A CERTAIN TYPE OF IRREGULAR ALGEBRAIC SURFACES
    KODAIRA, K
    JOURNAL D ANALYSE MATHEMATIQUE, 1967, 19 : 207 - &
  • [7] A Restriction Estimate for a Certain Surface of Finite Type in R3
    Li, Zhuoran
    Miao, Changxing
    Zheng, Jiqiang
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (04)
  • [8] A classification of ruled surfaces of finite type in S3
    Vlachos, Theodoros
    INTERNATIONAL WORKSHOP ON LINE GEOMETRY & KINEMATICS, IW - LGK - 11, 2011, : 149 - 153
  • [9] FINITE TYPE OF THE PEDAL OF REVOLUTION SURFACES IN E3
    Abdelatif, Mohamed
    Alldeen, Hamdy Nour
    Saoud, Hassan
    Suorya, Saleh
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) : 909 - 928
  • [10] On the Irreducibility of Certain Shifts of Finite Type
    Kobayashi, Tetsuya
    Manada, Akiko
    Ota, Takahiro
    Morita, Hiroyoshi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (12) : 2415 - 2421