A REMARK ON THE MBIUS TRANSFORMATIONS (Ⅲ)

被引:0
|
作者
龚昇
严志敏
机构
[1] Hefei
[2] University of Science and Technology of China
关键词
BIUS TRANSFORMATIONS; A REMARK ON THE M;
D O I
暂无
中图分类号
学科分类号
摘要
In [1], the following was proved: in the expansion of an analytic function in the unit disk of one complex variable under the M?bius transformation the coefficients of the general term can be expressed by the nth covariant derivative, that is
引用
收藏
页码:1153 / 1156
页数:4
相关论文
共 50 条
  • [1] A REMARK ON THE MBIUS TRANSFORMATIONS (Ⅱ)
    龚昇
    [J]. Science Bulletin, 1984, (03) : 293 - 297
  • [2] On the Harmonic Möbius Transformations
    Rodrigo Hernández
    María J. Martín
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [3] Hypermonogenic functions and Möbius transformations
    Sirkka-Liisa Eriksson-Bique
    Heinz Leutwiler
    [J]. Advances in Applied Clifford Algebras, 2001, 11 (Suppl 2) : 67 - 76
  • [4] Topological classification of Möbius transformations
    Rybalkina T.
    Sergeichuk V.
    [J]. Journal of Mathematical Sciences, 2013, 193 (5) : 769 - 774
  • [5] Commutators of Mbius Transformations in Rn
    喻祖国
    王键
    [J]. Communications in Mathematical Research, 1998, (02) : 9 - 16
  • [6] Orthogonal polynomials and Möbius transformations
    R. S. Vieira
    V. Botta
    [J]. Computational and Applied Mathematics, 2021, 40
  • [7] Conjugacy Classification of Quaternionic Möbius Transformations
    John R. Parker
    Ian Short
    [J]. Computational Methods and Function Theory, 2009, 9 (1) : 13 - 25
  • [8] The Visual Angle Metric and Möbius Transformations
    Riku Klén
    Henri Lindén
    Matti Vuorinen
    Gendi Wang
    [J]. Computational Methods and Function Theory, 2014, 14 : 577 - 608
  • [9] Notes on discrete subgroups of Möbius transformations
    HUA WANG
    YUEPING JIANG
    WENSHENG CAO
    [J]. Proceedings - Mathematical Sciences, 2013, 123 : 245 - 251
  • [10] Möbius Transformations in Noncommutative Conformal Geometry
    P. J. M. Bongaarts
    J. Brodzki
    [J]. Communications in Mathematical Physics, 1999, 201 : 35 - 60