A REMARK ON THE MBIUS TRANSFORMATIONS (Ⅲ)

被引:0
|
作者
龚昇
严志敏
机构
[1] Hefei
[2] University of Science and Technology of China
关键词
BIUS TRANSFORMATIONS; A REMARK ON THE M;
D O I
暂无
中图分类号
学科分类号
摘要
In [1], the following was proved: in the expansion of an analytic function in the unit disk of one complex variable under the M?bius transformation the coefficients of the general term can be expressed by the nth covariant derivative, that is
引用
收藏
页码:1153 / 1156
页数:4
相关论文
共 50 条
  • [31] The Fixed Points and Cross-Ratios of Hyperbolic Möbius Transformations in Bicomplex Space
    Litao Chen
    Binlin Dai
    [J]. Advances in Applied Clifford Algebras, 2022, 32
  • [32] A REMARK ON BRS TRANSFORMATIONS
    LOPUSZANSKI, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1988, 3 (11): : 2589 - 2600
  • [33] The Möbius matroids
    Pivotto, Irene
    Royle, Gordon
    [J]. Advances in Applied Mathematics, 2021, 126
  • [34] A Combinatorial Method to Introduce Mbius Inversion Formula and Mbius Function
    陈难先
    [J]. Science Bulletin, 1993, (01) : 27 - 31
  • [35] Möbius Strips Before Möbius: Topological Hints in Ancient Representations
    Julyan H. E. Cartwright
    Diego L. González
    [J]. The Mathematical Intelligencer, 2016, 38 : 69 - 76
  • [36] Erratum to: Möbius photogrammetry
    Matteo Gallet
    Georg Nawratil
    Josef Schicho
    [J]. Journal of Geometry, 2015, 106 (3) : 441 - 442
  • [37] A modified Möbius μ-function
    Steuding R.
    Steuding J.
    Tóth L.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2011, 60 (1-2) : 13 - 21
  • [38] Riemann Sums and Möbius
    William A. Veech
    [J]. Journal d'Analyse Mathématique, 2018, 135 : 413 - 436
  • [39] A REMARK ON THE MOBIUS TRANSFORMATIONS (II)
    GONG, S
    [J]. KEXUE TONGBAO, 1984, 29 (03): : 293 - 297
  • [40] Möbius' theorem and commutativity
    Witczyński K.
    [J]. Journal of Geometry, 1997, 59 (1-2) : 182 - 183