Topological classification of Möbius transformations

被引:0
|
作者
Rybalkina T. [1 ]
Sergeichuk V. [1 ]
机构
[1] Institute of Mathematics, Tereschenkivska st., 3, Kiev
关键词
Linear Operator; Conjugacy Class; Canonical Form; Discrete Dynamical System; Linear Fractional Transformation;
D O I
10.1007/s10958-013-1496-1
中图分类号
学科分类号
摘要
Linear fractional transformations on the extended complex plane are classified up to topological conjugacy. Recall that two transformations f and g are called topologically conjugate if there exists a homeomorphism h such that g = h -1 ? f ? h, where ? is the composition of mappings. © 2013 Springer Science+Business Media New York.
引用
收藏
页码:769 / 774
页数:5
相关论文
共 50 条
  • [1] Conjugacy Classification of Quaternionic Möbius Transformations
    John R. Parker
    Ian Short
    [J]. Computational Methods and Function Theory, 2009, 9 (1) : 13 - 25
  • [2] A REMARK ON THE MBIUS TRANSFORMATIONS (Ⅱ)
    龚昇
    [J]. Science Bulletin, 1984, (03) : 293 - 297
  • [3] A REMARK ON THE MBIUS TRANSFORMATIONS (Ⅲ)
    龚昇
    严志敏
    [J]. Science Bulletin, 1987, (17) : 1153 - 1156
  • [4] On the Harmonic Möbius Transformations
    Rodrigo Hernández
    María J. Martín
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [5] Hypermonogenic functions and Möbius transformations
    Sirkka-Liisa Eriksson-Bique
    Heinz Leutwiler
    [J]. Advances in Applied Clifford Algebras, 2001, 11 (Suppl 2) : 67 - 76
  • [6] Möbius Strips Before Möbius: Topological Hints in Ancient Representations
    Julyan H. E. Cartwright
    Diego L. González
    [J]. The Mathematical Intelligencer, 2016, 38 : 69 - 76
  • [7] Commutators of Mbius Transformations in Rn
    喻祖国
    王键
    [J]. Communications in Mathematical Research, 1998, (02) : 9 - 16
  • [8] Orthogonal polynomials and Möbius transformations
    R. S. Vieira
    V. Botta
    [J]. Computational and Applied Mathematics, 2021, 40
  • [9] The Visual Angle Metric and Möbius Transformations
    Riku Klén
    Henri Lindén
    Matti Vuorinen
    Gendi Wang
    [J]. Computational Methods and Function Theory, 2014, 14 : 577 - 608
  • [10] Notes on discrete subgroups of Möbius transformations
    HUA WANG
    YUEPING JIANG
    WENSHENG CAO
    [J]. Proceedings - Mathematical Sciences, 2013, 123 : 245 - 251