The Visual Angle Metric and Möbius Transformations

被引:0
|
作者
Riku Klén
Henri Lindén
Matti Vuorinen
Gendi Wang
机构
[1] University of Turku,Department of Mathematics and Statistics
关键词
The visual angle metric; The hyperbolic metric; Lipschitz constant; 30F45(51M10);
D O I
暂无
中图分类号
学科分类号
摘要
A new similarity invariant metric vG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_G$$\end{document} is introduced. The visual angle metric vG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_G$$\end{document} is defined on a domain G⊊Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\subsetneq {{\mathbb {R}}}^n$$\end{document} whose boundary is not a proper subset of a line. We find sharp bounds for vG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_G$$\end{document} in terms of the hyperbolic metric in the particular case when the domain is either the unit ball Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}^n$$\end{document} or the upper half space Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^n$$\end{document}. We also obtain the sharp Lipschitz constant for a Möbius transformation f:G→G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: G\rightarrow G'$$\end{document} between domains G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document} with respect to the metrics vG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_G$$\end{document} and vG′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{G'}$$\end{document}. For instance, in the case G=G′=Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=G'={\mathbb {B}}^n$$\end{document} the result is sharp.
引用
收藏
页码:577 / 608
页数:31
相关论文
共 50 条
  • [1] The Visual Angle Metric and Mobius Transformations
    Klen, Riku
    Linden, Henri
    Vuorinen, Matti
    Wang, Gendi
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (2-3) : 577 - 608
  • [2] Lipschitz constants for a hyperbolic type metric under Möbius transformations
    Wu, Yinping
    Wang, Gendi
    Jia, Gaili
    Zhang, Xiaohui
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (02) : 445 - 460
  • [3] A REMARK ON THE MBIUS TRANSFORMATIONS (Ⅱ)
    龚昇
    [J]. Science Bulletin, 1984, (03) : 293 - 297
  • [4] A REMARK ON THE MBIUS TRANSFORMATIONS (Ⅲ)
    龚昇
    严志敏
    [J]. Science Bulletin, 1987, (17) : 1153 - 1156
  • [5] On the Harmonic Möbius Transformations
    Rodrigo Hernández
    María J. Martín
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [6] Möbius Invariant Cassinian Metric
    Zair Ibragimov
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 1349 - 1367
  • [7] Möbius metric in sector domains
    Oona Rainio
    Matti Vuorinen
    [J]. Czechoslovak Mathematical Journal, 2023, 73 : 213 - 236
  • [8] Hypermonogenic functions and Möbius transformations
    Sirkka-Liisa Eriksson-Bique
    Heinz Leutwiler
    [J]. Advances in Applied Clifford Algebras, 2001, 11 (Suppl 2) : 67 - 76
  • [9] Topological classification of Möbius transformations
    Rybalkina T.
    Sergeichuk V.
    [J]. Journal of Mathematical Sciences, 2013, 193 (5) : 769 - 774
  • [10] Commutators of Mbius Transformations in Rn
    喻祖国
    王键
    [J]. Communications in Mathematical Research, 1998, (02) : 9 - 16