The visual angle metric;
The hyperbolic metric;
Lipschitz constant;
30F45(51M10);
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A new similarity invariant metric vG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_G$$\end{document} is introduced. The visual angle metric vG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_G$$\end{document} is defined on a domain G⊊Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G\subsetneq {{\mathbb {R}}}^n$$\end{document} whose boundary is not a proper subset of a line. We find sharp bounds for vG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_G$$\end{document} in terms of the hyperbolic metric in the particular case when the domain is either the unit ball Bn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {B}}^n$$\end{document} or the upper half space Hn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {H}}^n$$\end{document}. We also obtain the sharp Lipschitz constant for a Möbius transformation f:G→G′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f: G\rightarrow G'$$\end{document} between domains G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} and G′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G'$$\end{document} in Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb {R}}}^n$$\end{document} with respect to the metrics vG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_G$$\end{document} and vG′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_{G'}$$\end{document}. For instance, in the case G=G′=Bn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G=G'={\mathbb {B}}^n$$\end{document} the result is sharp.
机构:
Zhejiang Sci Tech Univ, Dept Math Sci, 928 Second Ave, Hangzhou 310018, Peoples R ChinaZhejiang Sci Tech Univ, Dept Math Sci, 928 Second Ave, Hangzhou 310018, Peoples R China
Wu, Yinping
Wang, Gendi
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Sci Tech Univ, Dept Math Sci, 928 Second Ave, Hangzhou 310018, Peoples R ChinaZhejiang Sci Tech Univ, Dept Math Sci, 928 Second Ave, Hangzhou 310018, Peoples R China
Wang, Gendi
Jia, Gaili
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Sci Tech Univ, Dept Math Sci, 928 Second Ave, Hangzhou 310018, Peoples R ChinaZhejiang Sci Tech Univ, Dept Math Sci, 928 Second Ave, Hangzhou 310018, Peoples R China
Jia, Gaili
Zhang, Xiaohui
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Sci Tech Univ, Dept Math Sci, 928 Second Ave, Hangzhou 310018, Peoples R ChinaZhejiang Sci Tech Univ, Dept Math Sci, 928 Second Ave, Hangzhou 310018, Peoples R China