A Variation of a Conjecture Due to Erds and Sós

被引:0
|
作者
Jian Hua YINDepartment of Mathematics
机构
基金
中国国家自然科学基金;
关键词
graph; degree sequence; Erdos-Sos conjecture;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
Erdos and Sos conjectured in 1963 that every graph G on n vertices with edge numbere(G) > 1/2(k - 1)n contains every tree T with k edges as a subgraph.In this paper,we consider avariation of the above conjecture,that is,for n > 9/2k~2 + 37/2k + 14 and every graph G on n vertices withe(G) > 1/2 (k-1)n,we prove that there exists a graph G’ on n vertices having the same degree sequenceas G and containing every tree T with k edges as a subgraph.
引用
收藏
页码:795 / 802
页数:8
相关论文
共 50 条
  • [41] A Variation of Thompson’S Conjecture for the Symmetric Groups
    Mahdi Abedei
    Ali Iranmanesh
    Farrokh Shirjian
    Czechoslovak Mathematical Journal, 2020, 70 : 743 - 755
  • [42] A Variation of Thompson'S Conjecture for the Symmetric Groups
    Abedei, Mahdi
    Iranmanesh, Ali
    Shirjian, Farrokh
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (03) : 743 - 755
  • [44] On Erdős's Proof of the Existence of Cages
    Vatter, Vincent
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (10): : 892 - 892
  • [45] On Erdős's Eulerian Trail Game
    Ákos Seress
    Tibor Szabó
    Graphs and Combinatorics, 1999, 15 : 233 - 237
  • [46] Greenberg's conjecture and Leopoldt's conjecture
    Kubotera, N
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (07) : 108 - 110
  • [47] A problem of Erdős and Sós on 3-graphs
    Roman Glebov
    Daniel Král’
    Jan Volec
    Israel Journal of Mathematics, 2016, 211 : 349 - 366
  • [48] On An Extremal Hypergraph Problem Of Brown, Erdős And Sós
    Noga Alon*
    Asaf Shapira†
    Combinatorica, 2006, 26 : 627 - 645
  • [49] Coloring linear hypergraphs: the Erdős–Faber–Lovász conjecture and the Combinatorial Nullstellensatz
    Oliver Janzer
    Zoltán Lóránt Nagy
    Designs, Codes and Cryptography, 2022, 90 : 1991 - 2001
  • [50] The Erdös-Jacobson-Lehel conjecture on potentiallyPk-graphic sequence is true
    Jiongsheng Li
    Zixia Song
    Rong Luo
    Science in China Series A: Mathematics, 1998, 41 : 510 - 520