A Variation of a Conjecture Due to Erds and Sós

被引:0
|
作者
Jian Hua YINDepartment of Mathematics
机构
基金
中国国家自然科学基金;
关键词
graph; degree sequence; Erdos-Sos conjecture;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
Erdos and Sos conjectured in 1963 that every graph G on n vertices with edge numbere(G) > 1/2(k - 1)n contains every tree T with k edges as a subgraph.In this paper,we consider avariation of the above conjecture,that is,for n > 9/2k~2 + 37/2k + 14 and every graph G on n vertices withe(G) > 1/2 (k-1)n,we prove that there exists a graph G’ on n vertices having the same degree sequenceas G and containing every tree T with k edges as a subgraph.
引用
收藏
页码:795 / 802
页数:8
相关论文
共 50 条
  • [21] On an ErdŐs-Kac-Type Conjecture of Elliott
    Gorodetsky, Ofir
    Grimmelt, Lasse
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (02): : 695 - 713
  • [22] A New Proof of the Erdős–Simonovits Conjecture on Walks
    Grigoriy Blekherman
    Annie Raymond
    Graphs and Combinatorics, 2023, 39
  • [23] The Threshold for the Erdős, Jacobson and Lehel Conjecture to Be True
    Jiong Sheng Li
    Jian Hua Yin
    Acta Mathematica Sinica, 2006, 22 : 1133 - 1138
  • [24] A short proof of Erdős’ conjecture for triple systems
    P. Frankl
    V. Rödl
    A. Ruciński
    Acta Mathematica Hungarica, 2017, 151 : 495 - 509
  • [25] A variation of a conjecture due to Erdos and SA3s
    Yin, Jian Hua
    Li, Jiong Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (05) : 795 - 802
  • [26] Towards the Erdős-Gallai cycle decomposition conjecture
    Bucic, Matija
    Montgomery, Richard
    ADVANCES IN MATHEMATICS, 2024, 437
  • [27] On a Conjecture of Erdős on Locally Sparse Steiner Triple Systems
    Stefan Glock
    Daniela Kühn
    Allan Lo
    Deryk Osthus
    Combinatorica, 2020, 40 : 363 - 403
  • [28] Additive functions in short intervals, gaps and a conjecture of Erdős
    Alexander P. Mangerel
    The Ramanujan Journal, 2022, 59 : 1023 - 1090
  • [29] Proof Of A Conjecture Of Erdős On Triangles In Set-Systems
    Dhruv Mubayi
    Jacques Verstraëte
    Combinatorica, 2005, 25 : 599 - 614
  • [30] A new upper bound on Ruzsa's numbers on the Erdős-Turán conjecture
    Ding, Yuchen
    Zhao, Lilu
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (06) : 1515 - 1523