A Variation of a Conjecture Due to Erds and Sós

被引:0
|
作者
Jian Hua YINDepartment of Mathematics
机构
基金
中国国家自然科学基金;
关键词
graph; degree sequence; Erdos-Sos conjecture;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
Erdos and Sos conjectured in 1963 that every graph G on n vertices with edge numbere(G) > 1/2(k - 1)n contains every tree T with k edges as a subgraph.In this paper,we consider avariation of the above conjecture,that is,for n > 9/2k~2 + 37/2k + 14 and every graph G on n vertices withe(G) > 1/2 (k-1)n,we prove that there exists a graph G’ on n vertices having the same degree sequenceas G and containing every tree T with k edges as a subgraph.
引用
收藏
页码:795 / 802
页数:8
相关论文
共 50 条
  • [11] About Erdös discrepancy conjecture
    Ramon Carbó-Dorca
    Journal of Mathematical Chemistry, 2016, 54 : 657 - 660
  • [12] On the Erdős-Tuza-Valtr conjecture
    Baek, Jineon
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 124
  • [13] Proof of the Erdős–Faudree Conjecture on Quadrilaterals
    Hong Wang
    Graphs and Combinatorics, 2010, 26 : 833 - 877
  • [14] Fifty years of the Erdős similarity conjecture
    Jung, Yeonwook
    Lai, Chun-Kit
    Mooroogen, Yuveshen
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2025, 12 (01)
  • [15] On a conjecture of Erdős and Simonovits: Even cycles
    Peter Keevash
    Benny Sudakov
    Jacques Verstraëte
    Combinatorica, 2013, 33 : 699 - 732
  • [16] Erdős–Gyárfás conjecture for some families of Cayley graphs
    Mohammad Hossein Ghaffari
    Zohreh Mostaghim
    Aequationes mathematicae, 2018, 92 : 1 - 6
  • [17] Two Improvements on the Erdös, Harary and Klawe Conjecture
    Jiangdong Liao
    Shihui Yang
    Mediterranean Journal of Mathematics, 2015, 12 : 263 - 279
  • [18] An Improved Upper Bound for the Erdős–Szekeres Conjecture
    Hossein Nassajian Mojarrad
    Georgios Vlachos
    Discrete & Computational Geometry, 2016, 56 : 165 - 180
  • [19] Proof of the Erdős matching conjecture in a new range
    Peter Frankl
    Israel Journal of Mathematics, 2017, 222 : 421 - 430
  • [20] Forbidding Couples of Tournaments and the Erdös–Hajnal Conjecture
    Soukaina Zayat
    Salman Ghazal
    Graphs and Combinatorics, 2023, 39