GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data

被引:2
|
作者
Riccardo Calandrelli [1 ]
Qiuyang Wu [2 ]
Jihong Guan [2 ]
Sheng Zhong [1 ]
机构
[1] Department of Bioengineering, University of California San Diego
[2] Department of Computer Science and Technology, Tongji University
基金
美国国家卫生研究院;
关键词
Chromatin interaction; Pipeline; Hi-C data normalization; Topologically-associated domain; Processed Hi-C data library;
D O I
暂无
中图分类号
Q811.4 [生物信息论];
学科分类号
0711 ; 0831 ;
摘要
Interactions between chromatin segments play a large role in functional genomic assays and developments in genomic interaction detection methods have shown interacting topological domains within the genome. Among these methods, Hi-C plays a key role. Here, we present the Genome Interaction Tools and Resources(GITAR), a software to perform a comprehensive Hi-C data analysis, including data preprocessing, normalization, and visualization, as well as analysis of topologically-associated domains(TADs). GITAR is composed of two main modules:(1)HiCtool, a Python library to process and visualize Hi-C data, including TAD analysis; and(2)processed data library, a large collection of human and mouse datasets processed using HiCtool.HiCtool leads the user step-by-step through a pipeline, which goes from the raw Hi-C data to the computation, visualization, and optimized storage of intra-chromosomal contact matrices and TAD coordinates. A large collection of standardized processed data allows the users to compare different datasets in a consistent way, while saving time to obtain data for visualization or additional analyses. More importantly, GITAR enables users without any programming or bioinformatic expertise to work with Hi-C data. GITAR is publicly available at http://genomegitar.org as an open-source software.
引用
收藏
页码:365 / 372
页数:8
相关论文
共 50 条
  • [31] Single-cell Hi-C data analysis: safety in numbers
    Galitsyna, Aleksandra A.
    Gelfand, Mikhail S.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [32] Methods for comparative ChIA-PET and Hi-C data analysis
    Capurso, Dan
    Tang, Zhonghui
    Ruan, Yijun
    METHODS, 2020, 170 : 69 - 74
  • [33] CHiCP: a web-based tool for the integrative and interactive visualization of promoter capture Hi-C datasets
    Schofield, E. C.
    Carver, T.
    Achuthan, P.
    Freire-Pritchett, P.
    Spivakov, M.
    Todd, J. A.
    Burren, O. S.
    BIOINFORMATICS, 2016, 32 (16) : 2511 - 2513
  • [34] HiCube: interactive visualization of multiscale and multimodal Hi-C and 3D genome data
    Ye, Tiantian
    Hu, Yangyang
    Pun, Sydney
    Ma, Wenxiu
    BIOINFORMATICS, 2023, 39 (04)
  • [35] GrapHi-C: Graph-based visualization of Hi-C datasets
    MacKay K.
    Kusalik A.
    Eskiw C.H.
    BMC Research Notes, 11 (1)
  • [36] Loop detection using Hi-C data with HiCExplorer
    Wolff, Joachim
    Backofen, Rolf
    Gruening, Bjoern
    GIGASCIENCE, 2022, 11
  • [37] Detecting Community Structures in Hi-C Genomic Data
    Cabreros, Irineo
    Abbe, Emmanuel
    Tsirigos, Aristotelis
    2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS), 2016,
  • [38] Advances in methods and applications of single-cell Hi-C data analysis
    Gong H.
    Ma F.
    Zhang X.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (05): : 1033 - 1039
  • [39] A Multigraph-Based Representation of Hi-C Data
    Makai, Diana
    Cseh, Andras
    Sepsi, Adel
    Makai, Szabolcs
    GENES, 2022, 13 (12)
  • [40] Juicebox.js']js Provides a Cloud-Based Visualization System for Hi-C Data
    Robinson, James T.
    Turner, Douglass
    Durand, Neva C.
    Thorvaldsdottir, Helga
    Mesirov, Jill P.
    Aiden, Erez Lieberman
    CELL SYSTEMS, 2018, 6 (02) : 256 - +