Juicebox.js']js Provides a Cloud-Based Visualization System for Hi-C Data

被引:242
|
作者
Robinson, James T. [1 ,2 ]
Turner, Douglass [1 ,3 ]
Durand, Neva C. [2 ,3 ,4 ,5 ]
Thorvaldsdottir, Helga [2 ]
Mesirov, Jill P. [1 ,2 ,6 ]
Aiden, Erez Lieberman [2 ,3 ,4 ,5 ]
机构
[1] Univ Calif San Diego, Sch Med, La Jolla, CA 92093 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[3] Baylor Coll Med, Ctr Genome Architecture, Dept Mol & Human Genet, Houston, TX 77030 USA
[4] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77030 USA
[5] Rice Univ, Dept Comp Sci, Houston, TX 77030 USA
[6] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92037 USA
关键词
HUMAN GENOME; PRINCIPLES;
D O I
10.1016/j.cels.2018.01.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Contact mapping experiments such as Hi-C explore how genomes fold in 3D. Here, we introduce Juicebox.js, a cloud-based web application for exploring the resulting datasets. Like the original Juicebox application, Juicebox.js allows users to zoom in and out of such datasets using an interface similar to Google Earth. Juicebox.js also has many features designed to facilitate data reproducibility and sharing. Furthermore, Juicebox.js encodes the exact state of the browser in a shareable URL. Creating a public browser for a new Hi-C dataset does not require coding and can be accomplished in under a minute. The web app also makes it possible to create interactive figures online that can complement or replace ordinary journal figures. When combined with Juicer, this makes the entire process of data analysis transparent, insofar as every step from raw reads to published figure is publicly available as open source code.
引用
收藏
页码:256 / +
页数:4
相关论文
共 50 条
  • [1] Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom
    Durand, Neva C.
    Robinson, James T.
    Shamim, Muhammad S.
    Machol, Ido
    Mesirov, Jill P.
    Lander, Eric S.
    Aiden, Erez Lieberman
    [J]. CELL SYSTEMS, 2016, 3 (01) : 99 - 101
  • [2] Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization
    Wolff, Joachim
    Rabbani, Leily
    Gilsbach, Ralf
    Richard, Gautier
    Manke, Thomas
    Backofen, Rolf
    Gruening, Bjoern A.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W177 - W184
  • [3] covNorm: An R package for coverage based normalization of Hi-C and capture Hi-C data
    Kim, Kyukwang
    Jung, Inkyung
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3149 - 3159
  • [4] Large Scale Network Topology Visualization System Based on Three.JS']JS
    Wang, Yuxiao
    Li, Yuanzhang
    Tan, Yu'an
    Zhang, Quanxin
    Zheng, Jun
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127
  • [5] GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data
    Riccardo Calandrelli
    Qiuyang Wu
    Jihong Guan
    Sheng Zhong
    [J]. Genomics,Proteomics & Bioinformatics, 2018, (05) : 365 - 372
  • [6] HiBrowser: an interactive and dynamic browser for synchronous Hi-C data visualization
    Li, Pingjing
    Liu, Hong
    Sun, Jialiang
    Lu, Jianguo
    Liu, Jian
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [7] GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data
    Calandrelli, Riccardo
    Wu, Qiuyang
    Guan, Jihong
    Zhong, Sheng
    [J]. GENOMICS PROTEOMICS & BIOINFORMATICS, 2018, 16 (05) : 365 - 372
  • [8] Cloud-Based Processing on Data Science for Visualization
    Ashari, Ahmad
    Tjoa, A. Min
    Riasetiawan, Mardhani
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (02) : 449 - 454
  • [9] GrapHi-C: Graph-based visualization of Hi-C datasets
    MacKay K.
    Kusalik A.
    Eskiw C.H.
    [J]. BMC Research Notes, 11 (1)
  • [10] A Multigraph-Based Representation of Hi-C Data
    Makai, Diana
    Cseh, Andras
    Sepsi, Adel
    Makai, Szabolcs
    [J]. GENES, 2022, 13 (12)