GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data

被引:2
|
作者
Riccardo Calandrelli [1 ]
Qiuyang Wu [2 ]
Jihong Guan [2 ]
Sheng Zhong [1 ]
机构
[1] Department of Bioengineering, University of California San Diego
[2] Department of Computer Science and Technology, Tongji University
基金
美国国家卫生研究院;
关键词
Chromatin interaction; Pipeline; Hi-C data normalization; Topologically-associated domain; Processed Hi-C data library;
D O I
暂无
中图分类号
Q811.4 [生物信息论];
学科分类号
0711 ; 0831 ;
摘要
Interactions between chromatin segments play a large role in functional genomic assays and developments in genomic interaction detection methods have shown interacting topological domains within the genome. Among these methods, Hi-C plays a key role. Here, we present the Genome Interaction Tools and Resources(GITAR), a software to perform a comprehensive Hi-C data analysis, including data preprocessing, normalization, and visualization, as well as analysis of topologically-associated domains(TADs). GITAR is composed of two main modules:(1)HiCtool, a Python library to process and visualize Hi-C data, including TAD analysis; and(2)processed data library, a large collection of human and mouse datasets processed using HiCtool.HiCtool leads the user step-by-step through a pipeline, which goes from the raw Hi-C data to the computation, visualization, and optimized storage of intra-chromosomal contact matrices and TAD coordinates. A large collection of standardized processed data allows the users to compare different datasets in a consistent way, while saving time to obtain data for visualization or additional analyses. More importantly, GITAR enables users without any programming or bioinformatic expertise to work with Hi-C data. GITAR is publicly available at http://genomegitar.org as an open-source software.
引用
下载
收藏
页码:365 / 372
页数:8
相关论文
共 50 条
  • [1] GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data
    Calandrelli, Riccardo
    Wu, Qiuyang
    Guan, Jihong
    Zhong, Sheng
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2018, 16 (05) : 365 - 372
  • [2] Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization
    Wolff, Joachim
    Rabbani, Leily
    Gilsbach, Ralf
    Richard, Gautier
    Manke, Thomas
    Backofen, Rolf
    Gruening, Bjoern A.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W177 - W184
  • [3] The DLO Hi-C Tool for Digestion-Ligation-Only Hi-C Chromosome Conformation Capture Data Analysis
    Hong, Ping
    Jiang, Hao
    Xu, Weize
    Lin, Da
    Xu, Qian
    Cao, Gang
    Li, Guoliang
    GENES, 2020, 11 (03)
  • [4] HiCdat: a fast and easy-to-use Hi-C data analysis tool
    Marc W. Schmid
    Stefan Grob
    Ueli Grossniklaus
    BMC Bioinformatics, 16
  • [5] HiCdat: a fast and easy-to-use Hi-C data analysis tool
    Schmid, Marc W.
    Grob, Stefan
    Grossniklaus, Ueli
    BMC BIOINFORMATICS, 2015, 16
  • [6] Computational tools for Hi-C data analysis
    Zhijun Han
    Gang Wei
    Quantitative Biology, 2017, 5 (03) : 215 - 225
  • [7] MHiC, an integrated user-friendly tool for the identification and visualization of significant interactions in Hi-C data
    Saman Khakmardan
    Mohsen Rezvani
    Ali Akbar Pouyan
    Mansoor Fateh
    Hamid Alinejad-Rokny
    BMC Genomics, 21
  • [8] MHiC, an integrated user-friendly tool for the identification and visualization of significant interactions in Hi-C data
    Khakmardan, Saman
    Rezvani, Mohsen
    Pouyan, Ali Akbar
    Fateh, Mansoor
    Alinejad-Rokny, Hamid
    BMC GENOMICS, 2020, 21 (01)
  • [9] HiBrowser: an interactive and dynamic browser for synchronous Hi-C data visualization
    Li, Pingjing
    Liu, Hong
    Sun, Jialiang
    Lu, Jianguo
    Liu, Jian
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [10] NuChart-II: The road to a fast and scalable tool for Hi-C data analysis
    Tordini, Fabio
    Drocco, Maurizio
    Misale, Claudia
    Milanesi, Luciano
    Lio, Pietro
    Merelli, Ivan
    Torquati, Massimo
    Aldinucci, Marco
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2017, 31 (03): : 196 - 211