Adaptive Local Linear Quantile Regression

被引:0
|
作者
Yu-nan Su 1
机构
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
quantile regression; local linear regression; adaptive smoothing; automatic choice of window size; Robustness;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose a new method of local linear adaptive smoothing for nonparametric conditional quantile regression. Some theoretical properties of the procedure are investigated. Then we demonstrate the performance of the method on a simulated example and compare it with other methods. The simulation results demonstrate a reasonable performance of our method proposed especially in situations when the underlying image is piecewise linear or can be approximated by such images. Generally speaking, our method outperforms most other existing methods in the sense of the mean square estimation (MSE) and mean absolute estimation (MAE) criteria. The procedure is very stable with respect to increasing noise level and the algorithm can be easily applied to higher dimensional situations.
引用
收藏
页码:509 / 516
页数:8
相关论文
共 50 条
  • [21] Bayesian adaptive Lasso quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    Benoit, Dries F.
    [J]. STATISTICAL MODELLING, 2012, 12 (03) : 279 - 297
  • [22] Partial functional linear quantile regression
    Tang QingGuo
    Cheng LongSheng
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2589 - 2608
  • [23] Partially linear censored quantile regression
    Neocleous, Tereza
    Portnoy, Stephen
    [J]. LIFETIME DATA ANALYSIS, 2009, 15 (03) : 357 - 378
  • [24] Partial functional linear quantile regression
    QingGuo Tang
    LongSheng Cheng
    [J]. Science China Mathematics, 2014, 57 : 2589 - 2608
  • [25] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [26] Partial functional linear quantile regression
    TANG QingGuo
    CHENG LongSheng
    [J]. Science China Mathematics, 2014, 57 (12) : 2589 - 2608
  • [27] Regularized linear censored quantile regression
    Minjeong Son
    Taehwa Choi
    Seung Jun Shin
    Yoonsuh Jung
    Sangbum Choi
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 589 - 607
  • [28] Quantile Regression under Local Misspecification
    Duan, Xiao-gang
    Wang, Qi-hua
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 790 - 802
  • [29] Partially linear censored quantile regression
    Tereza Neocleous
    Stephen Portnoy
    [J]. Lifetime Data Analysis, 2009, 15 : 357 - 378
  • [30] Composite Hierachical Linear Quantile Regression
    Chen, Yan-liang
    Tian, Mao-zai
    Yu, Ke-ming
    Pan, Jian-xin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 49 - 64