Adaptive Local Linear Quantile Regression

被引:0
|
作者
Yu-nan Su 1
机构
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
quantile regression; local linear regression; adaptive smoothing; automatic choice of window size; Robustness;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose a new method of local linear adaptive smoothing for nonparametric conditional quantile regression. Some theoretical properties of the procedure are investigated. Then we demonstrate the performance of the method on a simulated example and compare it with other methods. The simulation results demonstrate a reasonable performance of our method proposed especially in situations when the underlying image is piecewise linear or can be approximated by such images. Generally speaking, our method outperforms most other existing methods in the sense of the mean square estimation (MSE) and mean absolute estimation (MAE) criteria. The procedure is very stable with respect to increasing noise level and the algorithm can be easily applied to higher dimensional situations.
引用
收藏
页码:509 / 516
页数:8
相关论文
共 50 条
  • [31] Partially linear censored quantile regression
    Tereza Neocleous
    Stephen Portnoy
    [J]. Lifetime Data Analysis, 2009, 15 : 357 - 378
  • [32] Composite Hierachical Linear Quantile Regression
    Yan-liang CHEN
    Mao-zai TIAN
    Ke-ming YU
    Jian-xin PAN
    [J]. Acta Mathematicae Applicatae Sinica, 2014, (01) : 49 - 64
  • [33] ESTIMATION IN FUNCTIONAL LINEAR QUANTILE REGRESSION
    Kato, Kengo
    [J]. ANNALS OF STATISTICS, 2012, 40 (06): : 3108 - 3136
  • [34] Local asymptotics for nonparametric quantile regression with regression splines
    Zhao, Weihua
    Lian, Heng
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 117 : 209 - 215
  • [35] Quantile Regression under Local Misspecification
    Xiao-gang DUAN
    Qi-hua WANG
    [J]. Acta Mathematicae Applicatae Sinica, 2020, 36 (04) : 790 - 802
  • [36] Partial functional linear quantile regression
    Tang QingGuo
    Cheng LongSheng
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2589 - 2608
  • [37] Quantile Regression under Local Misspecification
    Xiao-gang Duan
    Qi-hua Wang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 790 - 802
  • [38] Quantile Regression under Local Misspecification
    Duan, Xiao-gang
    Wang, Qi-hua
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 790 - 802
  • [39] Comparison Between Empirical Mode Decomposition and Local Linear Quantile Regression in the Presence of Boundaries
    Jaber, Abobaker M.
    Ismail, Mohd Tahir
    [J]. PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 1046 - 1050
  • [40] Empirical Mode Decomposition Combined with Local Linear Quantile Regression for Automatic Boundary Correction
    Jaber, Abobaker M.
    Ismail, Mohd Tahir
    Altaher, Alssaidi M.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,