Parametric S-Parameter Prediction Using Deep Learning

被引:0
|
作者
Bansal, Vinayak [1 ]
Feng, Lihong [2 ]
de la Rubia, Valentin [3 ]
Benner, Peter [2 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Delhi, India
[2] Max Planck Inst Dynam Complex Tech Syst, Computat Methods Syst & Control Theory, Magdeburg, Germany
[3] Univ Politecn Madrid, Dept Matemat Aplicada TIC, Madrid, Spain
关键词
S-parameter; convolutional autoencoder; feed-forward neural network;
D O I
10.1109/EPEPS61853.2024.10754126
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We construct a neural network model of Sparameters, from which the S-parameters can be quickly predicted. Numerical tests on a filter model show that the proposed method accurately predicts the S-parameters with multiple sharp resonances.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Analysis of S-Parameter Using Different Materials for the WPT Resonance Coil
    Jeong, In-Sung
    Choi, Hye-Won
    Choi, Hyo-Sang
    Chung, Dong-Chul
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (03)
  • [42] Wideband Impedance Measurement of Balanced Antenna Using the S-Parameter Method
    Konya, Shohei
    Sasamori, Takayuki
    Tobana, Teruo
    Isota, Yoji
    ASIA-PACIFIC MICROWAVE CONFERENCE 2011, 2011, : 717 - 720
  • [43] Improvement of Measurement by S-Parameter Method using Transmission Line Theory
    Sasamori, Takayuki
    Tobana, Teruo
    Isota, Yoji
    2017 IEEE CONFERENCE ON ANTENNA MEASUREMENTS & APPLICATIONS (CAMA), 2017, : 411 - 413
  • [44] Floating Circuit S-parameter Measurement Using Indirect Measurement Method
    Fukunaga, Kengo
    Maeda, Noboru
    Miwa, Keishi
    Ota, Soichiro
    PROCEEDINGS OF THE 2020 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE), 2020,
  • [45] Hyper-parameter optimization of deep learning model for prediction of Parkinson's disease
    Kaur, Sukhpal
    Aggarwal, Himanshu
    Rani, Rinkle
    MACHINE VISION AND APPLICATIONS, 2020, 31 (05)
  • [46] Wideband 2N-port S-parameter extraction from N-port S-parameter data
    Young, B
    ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING - IEEE 5TH TOPICAL MEETING, 1996, : 150 - 152
  • [47] Hyper-parameter optimization of deep learning model for prediction of Parkinson’s disease
    Sukhpal Kaur
    Himanshu Aggarwal
    Rinkle Rani
    Machine Vision and Applications, 2020, 31
  • [48] Accurate broadband parameter extraction methodology for S-parameter measurements
    Balachandran, J
    Brebels, S
    Carchon, G
    De Raedt, W
    Nauwelaers, B
    Beyne, E
    SIGNAL PROPAGATION ON INTERCONNECTS, PROCEEDINGS, 2005, : 57 - 60
  • [49] Tracking advances in pulsed S-parameter measurements
    Betts, Loren
    MICROWAVES & RF, 2007, 46 (09) : 61 - +
  • [50] Probe-tone S-parameter measurements
    Martens, J
    Kapetanic, P
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (09) : 2076 - 2082