A high-throughput unified transform architecture for Versatile Video Coding

被引:0
|
作者
Mohd Rafi Lone [1 ]
机构
[1] VIT Bhopal University,
[2] Fraunhofer Institute for Telecommunications,undefined
[3] Heinrich Hertz Institute,undefined
关键词
Versatile Video Coding; Multiple transform selection; FPGA-based acceleration; Hardware acceleration; High performance computing;
D O I
10.1007/s10586-024-05020-2
中图分类号
学科分类号
摘要
Versatile Video Coding (VVC) offers a compression efficiency improvement of 50% and 75% compared to its predecessors, High Efficiency Video Coding (HEVC) and Advanced Video Coding (AVC), respectively. The VVC encoder software (VVENC), while highly efficient, remains exceedingly complex and operates at speeds that are not conducive to real-time encoding. Despite various speed-optimized versions being released since its standardization in 2020, the complexity remains substantial. This complexity primarily arises from the multiple transform selection (MTS) feature, which involves three transform types (DCT-II, DCT-VIII, and DST-VII) and various rectangular transform sizes ranging from 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} to 64×64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64\times 64$$\end{document}. In this research paper, we propose a unified transform architecture (UTA) that encompasses all transform types and sizes specified in VVENC. It supports both forward as well as inverse transform. The proposed architecture features a reusable one-dimensional transform system, consisting of two 32-point transform subsystems to perform the two-dimensional transform. This architecture can process up to 64 samples in parallel, achieving a high throughput. The architecture is implemented in VHDL and implemented on an Intel Arria 10 FPGA board, achieving a throughput of up to 332 fps at 3840×2160\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3840\times 2160$$\end{document} resolution with 64×64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64\times 64$$\end{document} transform sizes. This makes the architecture a viable candidate for use as a co-processor with the VVENC software.
引用
收藏
相关论文
共 50 条
  • [41] High-Throughput Layered LDPC Decoding Architecture
    Cui, Zhiqiang
    Wang, Zhongfeng
    Liu, Youjian
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2009, 17 (04) : 582 - 587
  • [42] High-throughput CABAC codec architecture for HEVC
    Choi, Yongseok
    Choi, Jongbum
    ELECTRONICS LETTERS, 2013, 49 (18) : 1145 - 1146
  • [43] Reconfigurable Inverse Transform Architecture for Multiple Purpose Video Coding
    Huang, Tsung-Yuan
    Lin, He-Yuan
    Chen, Chun-Fu
    Lee, Gwo Giun
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1223 - 1226
  • [44] High-throughput VLSI architecture for FFT computation
    Cheng, Chao
    Parhi, Keshab K.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2007, 54 (10) : 863 - 867
  • [45] Unified Fast Partitioning Algorithm for Intra and Inter Predictions in Versatile Video Coding
    Kuang, Wei
    Li, Xiang
    Zhao, Xin
    Liu, Shan
    2022 PICTURE CODING SYMPOSIUM (PCS), 2022, : 271 - 275
  • [46] High-Throughput Sharp Interpolation Filter Hardware Architecture for the AV1 Video Codec
    Freitas, Daiane
    Diniz, Claudio M.
    Grellert, Mateus
    Correa, Guilherme
    34TH SBC/SBMICRO/IEEE/ACM SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN (SBCCI 2021), 2021,
  • [47] A high-throughput ASIC processor for 8 x 8 transform coding in H.264/AVC
    Michell, Juan A.
    Solana, Jose M.
    Ruiz, Gustavo A.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2011, 26 (02) : 93 - 104
  • [48] A unified architecture for real-time video-coding systems
    Li, ZG
    Zhu, C
    Ling, N
    Yang, XK
    Feng, GN
    Wu, S
    Pan, F
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2003, 13 (06) : 472 - 487
  • [49] High-throughput broadband Fourier-transform CARS
    Ideguchi, Takuro
    Hashimoto, Kazuki
    Takahashi, Megumi
    Goda, Keisuke
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [50] Concurrent interleaving architectures for high-throughput channel coding
    Thul, MJ
    Gilbert, F
    Wehn, N
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SPEECH II; INDUSTRY TECHNOLOGY TRACKS; DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS; NEURAL NETWORKS FOR SIGNAL PROCESSING, 2003, : 613 - 616