A high-throughput unified transform architecture for Versatile Video Coding

被引:0
|
作者
Mohd Rafi Lone [1 ]
机构
[1] VIT Bhopal University,
[2] Fraunhofer Institute for Telecommunications,undefined
[3] Heinrich Hertz Institute,undefined
关键词
Versatile Video Coding; Multiple transform selection; FPGA-based acceleration; Hardware acceleration; High performance computing;
D O I
10.1007/s10586-024-05020-2
中图分类号
学科分类号
摘要
Versatile Video Coding (VVC) offers a compression efficiency improvement of 50% and 75% compared to its predecessors, High Efficiency Video Coding (HEVC) and Advanced Video Coding (AVC), respectively. The VVC encoder software (VVENC), while highly efficient, remains exceedingly complex and operates at speeds that are not conducive to real-time encoding. Despite various speed-optimized versions being released since its standardization in 2020, the complexity remains substantial. This complexity primarily arises from the multiple transform selection (MTS) feature, which involves three transform types (DCT-II, DCT-VIII, and DST-VII) and various rectangular transform sizes ranging from 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} to 64×64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64\times 64$$\end{document}. In this research paper, we propose a unified transform architecture (UTA) that encompasses all transform types and sizes specified in VVENC. It supports both forward as well as inverse transform. The proposed architecture features a reusable one-dimensional transform system, consisting of two 32-point transform subsystems to perform the two-dimensional transform. This architecture can process up to 64 samples in parallel, achieving a high throughput. The architecture is implemented in VHDL and implemented on an Intel Arria 10 FPGA board, achieving a throughput of up to 332 fps at 3840×2160\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3840\times 2160$$\end{document} resolution with 64×64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64\times 64$$\end{document} transform sizes. This makes the architecture a viable candidate for use as a co-processor with the VVENC software.
引用
收藏
相关论文
共 50 条
  • [31] Tailored AVX2 Transform Kernels for Versatile Video Coding
    Siivonen, Kari
    Sainio, Joose
    Mercat, Alexandre
    Vanne, Jarno
    2023 IEEE NORDIC CIRCUITS AND SYSTEMS CONFERENCE, NORCAS, 2023,
  • [32] High-throughput Imaging as a versatile and unbiased discovery tool
    Pegoraro, Gianluca
    Misteli, Tom
    METHODS, 2016, 96 : 1 - 2
  • [33] A multicriteria optimization of the discrete sine transform for versatile video coding standard
    Sonda Ben Jdidia
    Fatma Belghith
    Maher Jridi
    Nouri Masmoudi
    Signal, Image and Video Processing, 2022, 16 : 329 - 337
  • [34] Versatile glycoblotting nanoparticles for high-throughput protein glycomics
    Niikura, K
    Kamitani, R
    Kurogochi, M
    Uematsu, R
    Shinohara, Y
    Nakagawa, H
    Deguchi, K
    Monde, K
    Kondo, H
    Nishimura, SI
    CHEMISTRY-A EUROPEAN JOURNAL, 2005, 11 (13) : 3825 - 3834
  • [35] Microarray: A versatile platform for high-throughput functional proteomics
    Hu, Y
    Uttamchandani, M
    Yao, SQ
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2006, 9 (03) : 203 - 212
  • [36] A multicriteria optimization of the discrete sine transform for versatile video coding standard
    Ben Jdidia, Sonda
    Belghith, Fatma
    Jridi, Maher
    Masmoudi, Nouri
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (02) : 329 - 337
  • [37] Hardware Acceleration of Approximate Transform Module for the Versatile Video Coding Standard
    Kammoun, Ahmed
    Hamidouche, Wassim
    Philippe, Pierrick
    Belghith, Fatma
    Massmoudi, Nouri
    Nezan, Jean-Francois
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [38] Reconfigurable Adaptive Multiple Transform Hardware Solutions for Versatile Video Coding
    Sau, Carlo
    Ligas, Dario
    Fanni, Tiziana
    Raffo, Luigi
    Palumbo, Francesca
    IEEE ACCESS, 2019, 7 : 153258 - 153268
  • [39] Concurrent Systolic Architecture for High-Throughput Implementation of 3-Dimensional Discrete Wavelet Transform
    Mohanty, Basant K.
    Meher, Pramod K.
    2008 INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, 2008, : 162 - +
  • [40] A high-throughput two channel Discrete Wavelet Transform architecture for the JPEG2000 standard
    Badakhshannoory, H
    Hashemi, MR
    Aminlou, A
    Fatemi, O
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2005, PTS 1-4, 2005, 5960 : 1436 - 1443