A tensor-cube version of the Saxl conjecture

被引:0
|
作者
Harman, Nate [1 ]
Ryba, Christopher [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48101 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
ALGEBRAIC COMBINATORICS | 2023年 / 6卷 / 02期
关键词
Saxl conjecture; symmetric groups; SQUARE;
D O I
10.5802/alco.267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
tition of size N = ( n+1 ABSTRACT Let n be a positive integer, and let rho n = ( n, n -1 , n -2 , ... , 1) be the "staircase" par) . The Saxl conjecture asserts that every irreducible representation S lambda 2 of the symmetric group S N appears as a subrepresentation of the tensor square S rho A (R) S rho A . In this short note we give two proofs that every irreducible representation of S N appears in the tensor cube S rho A (R) S rho A (R) S rho A .
引用
收藏
页数:6
相关论文
共 50 条
  • [41] An Asymptotic Version of Frankl's Conjecture
    Studer, Luca
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (07): : 652 - 654
  • [42] A Valley Version of the Delta Square Conjecture
    Alessandro Iraci
    Anna Vanden Wyngaerd
    Annals of Combinatorics, 2021, 25 : 195 - 227
  • [43] An approximate version of a conjecture of Aharoni and Berger
    Pokrovskiy, Alexey
    ADVANCES IN MATHEMATICS, 2018, 333 : 1197 - 1241
  • [44] A Valley Version of the Delta Square Conjecture
    Iraci, Alessandro
    Vanden Wyngaerd, Anna
    ANNALS OF COMBINATORICS, 2021, 25 (01) : 195 - 227
  • [45] The edge version of Hadwiger's conjecture
    Ding, Guoli
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1118 - 1122
  • [46] Towards an effective version of Mazur conjecture
    Templier, Nicolas
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (23-24) : 1245 - 1247
  • [47] AN APPROXIMATE VERSION OF THE TREE PACKING CONJECTURE
    Boettcher, Julia
    Hladky, Jan
    Piguet, Diana
    Taraz, Anusch
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 211 (01) : 391 - 446
  • [48] The valley version of the Extended Delta Conjecture
    Qiu, Dun
    Wilson, Andrew Timothy
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [49] KUMMER AND IWASAWA VERSION OF LEOPOLDT CONJECTURE
    SANDS, JW
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1988, 31 (03): : 338 - 346
  • [50] A corrected version of Meyniel's conjecture
    Galeana-Sanchez, Hortensia
    Manrique, Martin
    Stehlik, Matej
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (01) : 71 - 83