A tensor-cube version of the Saxl conjecture

被引:0
|
作者
Harman, Nate [1 ]
Ryba, Christopher [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48101 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
ALGEBRAIC COMBINATORICS | 2023年 / 6卷 / 02期
关键词
Saxl conjecture; symmetric groups; SQUARE;
D O I
10.5802/alco.267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
tition of size N = ( n+1 ABSTRACT Let n be a positive integer, and let rho n = ( n, n -1 , n -2 , ... , 1) be the "staircase" par) . The Saxl conjecture asserts that every irreducible representation S lambda 2 of the symmetric group S N appears as a subrepresentation of the tensor square S rho A (R) S rho A . In this short note we give two proofs that every irreducible representation of S N appears in the tensor cube S rho A (R) S rho A (R) S rho A .
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Tensor decompositions for the bubbles and cube numerical framework
    Solala, Eelis
    Parkkinen, Pauli
    Sundholm, Dage
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 232 : 98 - 103
  • [32] A Dual Version of Huppert's ρ-σ Conjecture
    Malle, Gunter
    Moreto, Alexander
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [33] A MACKEY FUNCTOR VERSION OF A CONJECTURE OF ALPERIN
    THEVENAZ, J
    WEBB, PJ
    ASTERISQUE, 1990, (181-82) : 263 - 272
  • [34] A counterexample to a recent version of the Penrose conjecture
    Carrasco, Alberto
    Mars, Marc
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (06)
  • [35] A polynomial version of Sarnak's conjecture
    Eisner, Tanja
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (07) : 569 - 572
  • [36] An Approximate Version of Sidorenko’s Conjecture
    David Conlon
    Jacob Fox
    Benny Sudakov
    Geometric and Functional Analysis, 2010, 20 : 1354 - 1366
  • [37] A superlocal version of Reed's Conjecture
    Edwards, Katherine
    King, Andrew D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [38] On the modular version of Huppert's ρ-σ conjecture
    Lu, ZQ
    Zhang, JP
    JOURNAL OF ALGEBRA, 2000, 226 (01) : 216 - 224
  • [39] An approximate version of the tree packing conjecture
    Julia Böttcher
    Jan Hladký
    Diana Piguet
    Anusch Taraz
    Israel Journal of Mathematics, 2016, 211 : 391 - 446
  • [40] A Local Version of Szpiro's Conjecture
    Bennett, Michael A.
    Yazdani, Soroosh
    EXPERIMENTAL MATHEMATICS, 2012, 21 (02) : 103 - 116