A tensor-cube version of the Saxl conjecture

被引:0
|
作者
Harman, Nate [1 ]
Ryba, Christopher [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48101 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
ALGEBRAIC COMBINATORICS | 2023年 / 6卷 / 02期
关键词
Saxl conjecture; symmetric groups; SQUARE;
D O I
10.5802/alco.267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
tition of size N = ( n+1 ABSTRACT Let n be a positive integer, and let rho n = ( n, n -1 , n -2 , ... , 1) be the "staircase" par) . The Saxl conjecture asserts that every irreducible representation S lambda 2 of the symmetric group S N appears as a subrepresentation of the tensor square S rho A (R) S rho A . In this short note we give two proofs that every irreducible representation of S N appears in the tensor cube S rho A (R) S rho A (R) S rho A .
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A weak version of the Mond conjecture
    Conejero, R. Gimenez
    Nuno-Ballesteros, J. J.
    COLLECTANEA MATHEMATICA, 2024, 75 (03) : 753 - 770
  • [22] ON A STRONG VERSION OF THE KEPLER CONJECTURE
    Bezdek, Karoly
    MATHEMATIKA, 2013, 59 (01) : 23 - 30
  • [23] A randomized version of the Littlewood Conjecture
    Haynes, Alan
    Koivusalo, Henna
    JOURNAL OF NUMBER THEORY, 2017, 178 : 201 - 207
  • [24] The Apple Glass Cube: Version 2.0
    O'Callaghan, James
    Bostick, Charles
    CHALLENGING GLASS 3, 2012, : 57 - 65
  • [25] THE DOMATIC NUMBER OF THE N-CUBE AND A CONJECTURE BY ZELINKA
    LABORDE, JM
    EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (02) : 175 - 177
  • [26] Tensor decompositions and rank increment conjecture
    Tyrtyshnikov, Eugene E.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2020, 35 (04) : 239 - 246
  • [27] Generalized tensor idempotents and the telescope conjecture
    Balmer, Paul
    Favi, Giordano
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 102 : 1161 - 1185
  • [28] TENSOR-PRODUCTS AND A CONJECTURE OF ZASSENHAUS
    BLEHER, FM
    ARCHIV DER MATHEMATIK, 1995, 64 (04) : 289 - 298
  • [29] A REMARK ON THE MAHLER CONJECTURE: LOCAL MINIMALITY OF THE UNIT CUBE
    Nazarov, Fedor
    Petrov, Fedor
    Ryabogin, Dmitry
    Zvavitch, Artem
    DUKE MATHEMATICAL JOURNAL, 2010, 154 (03) : 419 - 430
  • [30] Tactile sensing cube measuring stress tensor
    Kiyota, Shohei
    Shinoda, Hiroyuki
    PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 2132 - 2135