Interpolation of toric varieties

被引:0
|
作者
Dickenstein, Alicia [1 ]
Di Rocco, Sandra [2 ]
Piene, Ragni [3 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[2] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
[3] Univ Oslo, Dept Math, POB 1053 Blindern, NO-0316 Oslo, Norway
来源
关键词
Toric variety; interpolation; osculating spaces; lattice polytopes;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X C P-d be an m-dimensional variety in d-dimensional complex projective space. Let k be a positive integer such that the combinatorial number ( m + k k ) is smaller than or equal to d . Consider the following interpolak tion problem: does there exist a variety Y C P-d of dimension strictly smaller than ( m + k k) , with X C Y , such that the tangent space to Y at a point p is an element of X is k equal to the k th osculating space to X at p , for almost all points p is an element of X ? In this paper we consider this question in the toric setting. We prove that if X is toric, then there is a unique toric variety Y solving the above interpolation problem. We identify Y in the general case and we explicitly compute some of its invariants when X is a toric curve.
引用
收藏
页码:1498 / 1516
页数:19
相关论文
共 50 条
  • [41] The geometry of toric hyperkahler varieties
    Konno, Hiroshi
    TORIC TOPOLOGY, 2008, 460 : 241 - 260
  • [42] KAEHLER STRUCTURES ON TORIC VARIETIES
    GUILLEMIN, V
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 40 (02) : 285 - 309
  • [43] Diophantine geometry and toric varieties
    Philippon, P
    Sombra, M
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (07) : 507 - 512
  • [44] Weights in the cohomology of toric varieties
    Weber, Andrzej
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (03): : 478 - 492
  • [45] On Fano Schemes of Toric Varieties
    Ilten, Nathan
    Zotine, Alexandre
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 152 - 174
  • [46] Syzygies of affine toric varieties
    Campillo, A
    Gimenez, P
    JOURNAL OF ALGEBRA, 2000, 225 (01) : 142 - 161
  • [47] Flux compactifications on toric varieties
    Larfors, Magdalena
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2011, 59 (7-8): : 730 - 733
  • [48] SINGULAR TORIC FANO VARIETIES
    BORISOV, AA
    BORISOV, LA
    RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1993, 75 (01) : 277 - 283
  • [49] Tilting sheaves on toric varieties
    L. Costa
    R. M. Miró-Roig
    Mathematische Zeitschrift, 2004, 248 : 849 - 865
  • [50] A GEOMETRIC CHARACTERIZATION OF TORIC VARIETIES
    Brown, Morgan V.
    Mckernan, James
    Svaldi, Roberto
    Zong, Hong R.
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (05) : 923 - 968