Interpolation of toric varieties

被引:0
|
作者
Dickenstein, Alicia [1 ]
Di Rocco, Sandra [2 ]
Piene, Ragni [3 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[2] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
[3] Univ Oslo, Dept Math, POB 1053 Blindern, NO-0316 Oslo, Norway
来源
关键词
Toric variety; interpolation; osculating spaces; lattice polytopes;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X C P-d be an m-dimensional variety in d-dimensional complex projective space. Let k be a positive integer such that the combinatorial number ( m + k k ) is smaller than or equal to d . Consider the following interpolak tion problem: does there exist a variety Y C P-d of dimension strictly smaller than ( m + k k) , with X C Y , such that the tangent space to Y at a point p is an element of X is k equal to the k th osculating space to X at p , for almost all points p is an element of X ? In this paper we consider this question in the toric setting. We prove that if X is toric, then there is a unique toric variety Y solving the above interpolation problem. We identify Y in the general case and we explicitly compute some of its invariants when X is a toric curve.
引用
收藏
页码:1498 / 1516
页数:19
相关论文
共 50 条
  • [31] Toric partial density functions and stability of toric varieties
    Florian T. Pokorny
    Michael Singer
    Mathematische Annalen, 2014, 358 : 879 - 923
  • [32] Toric degenerations of Schubert varieties
    Caldero, P
    TRANSFORMATION GROUPS, 2002, 7 (01) : 51 - 60
  • [33] ARITHMETIC POSITIVITY ON TORIC VARIETIES
    Burgos Gil, Jose Ignacio
    Moriwaki, Atsushi
    Philippon, Patrice
    Sombra, Martin
    JOURNAL OF ALGEBRAIC GEOMETRY, 2016, 25 (02) : 201 - 272
  • [34] Koszul duality for toric varieties
    Braden, Tom
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) : 385 - 415
  • [35] Automorphisms of products of toric varieties
    Liendo, Alvaro
    Arteche, Giancarlo Lucchini
    MATHEMATICAL RESEARCH LETTERS, 2022, 29 (02) : 529 - 540
  • [36] Phylogenetic toric varieties on graphs
    Weronika Buczyńska
    Journal of Algebraic Combinatorics, 2012, 35 : 421 - 460
  • [37] NEAREST POINTS ON TORIC VARIETIES
    Helmer, Martin
    Sturmfels, Bernd
    MATHEMATICA SCANDINAVICA, 2018, 122 (02) : 213 - 238
  • [38] Combinatorics and quotients of toric varieties
    Hu, Y
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (02) : 151 - 174
  • [39] A note on affine toric varieties
    Reyes, E
    Villarreal, RH
    Zárate, L
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 318 (1-3) : 173 - 179
  • [40] Quotients of divisorial toric varieties
    A'Campo-Neuen, A
    Hausen, J
    MICHIGAN MATHEMATICAL JOURNAL, 2002, 50 (01) : 101 - 123