Interpolation of toric varieties

被引:0
|
作者
Dickenstein, Alicia [1 ]
Di Rocco, Sandra [2 ]
Piene, Ragni [3 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[2] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
[3] Univ Oslo, Dept Math, POB 1053 Blindern, NO-0316 Oslo, Norway
来源
关键词
Toric variety; interpolation; osculating spaces; lattice polytopes;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X C P-d be an m-dimensional variety in d-dimensional complex projective space. Let k be a positive integer such that the combinatorial number ( m + k k ) is smaller than or equal to d . Consider the following interpolak tion problem: does there exist a variety Y C P-d of dimension strictly smaller than ( m + k k) , with X C Y , such that the tangent space to Y at a point p is an element of X is k equal to the k th osculating space to X at p , for almost all points p is an element of X ? In this paper we consider this question in the toric setting. We prove that if X is toric, then there is a unique toric variety Y solving the above interpolation problem. We identify Y in the general case and we explicitly compute some of its invariants when X is a toric curve.
引用
收藏
页码:1498 / 1516
页数:19
相关论文
共 50 条
  • [21] QUATERNIONIC TORIC VARIETIES
    SCOTT, R
    DUKE MATHEMATICAL JOURNAL, 1995, 78 (02) : 373 - 397
  • [22] Geometry of toric varieties
    Brasselet, JP
    ALGEBRAIC GEOMETRY, 1997, 193 : 53 - 87
  • [23] Discriminants of toric varieties
    Munoz, Roberto
    Nolla, Alvaro
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (12) : 5109 - 5128
  • [24] Toric varieties in phylogenetics
    Michalek, M.
    DISSERTATIONES MATHEMATICAE, 2015, (511) : 3 - 86
  • [25] Toric Richardson varieties
    Can, Mahir Bilen
    Saha, Pinakinath
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 1770 - 1790
  • [26] Schubert varieties, toric varieties, and ladder determinantal varieties
    Gonciulea, N
    Lakshmibai, V
    ANNALES DE L INSTITUT FOURIER, 1997, 47 (04) : 1013 - &
  • [27] Toric co-Higgs bundles on toric varieties
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    Rayan, Steven
    ILLINOIS JOURNAL OF MATHEMATICS, 2021, 65 (01) : 181 - 190
  • [28] Toric arc schemes and quantum cohomology of toric varieties
    Arkhipov, Sergey
    Kapranov, Mikhail
    MATHEMATISCHE ANNALEN, 2006, 335 (04) : 953 - 964
  • [29] Toric arc schemes and quantum cohomology of toric varieties
    Sergey Arkhipov
    Mikhail Kapranov
    Mathematische Annalen, 2006, 335 : 953 - 964
  • [30] Toric partial density functions and stability of toric varieties
    Pokorny, Florian T.
    Singer, Michael
    MATHEMATISCHE ANNALEN, 2014, 358 (3-4) : 879 - 923