Softening, Conformable, and Stretchable Conductors for Implantable Bioelectronics Interfaces

被引:0
|
作者
Rocha-Flores, Pedro E. [1 ]
Chitrakar, Chandani [2 ]
Rodriguez-Lopez, Ovidio [3 ]
Ren, Yao [4 ]
Joshi-Imre, Alexandra [5 ]
Parikh, Ankit R. [4 ]
Asan, Ahmet S. [6 ]
Mcintosh, James R. [6 ]
Garcia-Sandoval, Aldo [1 ]
Pancrazio, Joseph J. [1 ,5 ]
Ecker, Melanie [2 ]
Lu, Hongbing [4 ]
Carmel, Jason B. [6 ]
Voit, Walter E. [1 ,4 ,7 ]
机构
[1] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75080 USA
[2] Univ North Texas, Dept Biomed Engn, Denton, TX 76203 USA
[3] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[4] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[5] Univ Texas Dallas, Off Res & Innovat, Richardson, TX 75080 USA
[6] COLUMBIA UNIV, DEPT NEUROL, NEW YORK, NY 10027 USA
[7] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
来源
ADVANCED MATERIALS TECHNOLOGIES | 2025年 / 10卷 / 06期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
biomedical implants; flexible electronics; micro-hole arrays; neural modulation; softening polymers; spinal cord stimulation; stretchable conductors; MICROELECTRODES; STIMULATION; POLYMER;
D O I
10.1002/admt.202401047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Neural implantable devices serve as electronic interfaces facilitating communication between the body and external electronic systems. These bioelectronic systems ideally possess stable electrical conductivity, flexibility, and stretchability to accommodate dynamic movements within the body. However, achieving both high electrical conductivity and mechanical compatibility remains a challenge. Effective electrical conductors tend to be rigid and stiff, leading to a substantial mechanical mismatch with bodily tissues. On the other hand, highly stretchable polymers, while mechanically compatible, often suffer from limited compatibility with lithography techniques and reduced electrical stability. Therefore, there exists a pressing need to develop electromechanically stable neural interfaces that enable precise communication with biological tissues. In this study, a polymer that is softening, flexible, conformal, and compatible with lithography to microfabricate perforated thin-film architectures is utilized. These architectures offer stretchability and improved mechanical compatibility. Three distinct geometries are evaluated both mechanically and electrically under in vitro conditions that simulate physiological environments. Notably, the Peano structure demonstrates minimal changes in resistance, varying less than 1.5x even when subjected to approximate to 150% strain. Furthermore, devices exhibit a maximum mechanical elongation before fracture, reaching 220%. Finally, the application of multi-electrode spinal cord leads employing titanium nitride for neural stimulation in rat models is demonstrated.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Stable softening bioelectronics: A paradigm for chronically viable ester-free neural interfaces such as spinal cord stimulation implants
    Garcia-Sandoval, Aldo
    Guerrero, Edgar
    Hosseini, Seyed Mahmoud
    Rocha-Flores, Pedro E.
    Rihani, Rashed
    Black, Bryan J.
    Pal, Ajay
    Carmel, Jason B.
    Pancrazio, Joseph J.
    Voit, Walter E.
    BIOMATERIALS, 2021, 277
  • [42] Stretchable, Transparent, Ionic Conductors
    Keplinger, Christoph
    Sun, Jeong-Yun
    Foo, Choon Chiang
    Rothemund, Philipp
    Whitesides, George M.
    Suo, Zhigang
    SCIENCE, 2013, 341 (6149) : 984 - 987
  • [43] Bioinspired Strategies for Stretchable Conductors
    Feilong Zhang
    Xiaodong Chen
    Chemical Research in Chinese Universities, 2023, 39 : 30 - 41
  • [44] Recent progress on stretchable conductors
    He Wen-Qian
    Zhou Xiang
    Liu Zun-Feng
    ACTA PHYSICA SINICA, 2020, 69 (17)
  • [45] Thermal Release Transfer Printing for Stretchable Conformal Bioelectronics
    Yan, Zhuocheng
    Pan, Taisong
    Xue, Miaomiao
    Chen, Changyong
    Cui, Yan
    Yao, Guang
    Huang, Long
    Liao, Feiyi
    Jing, Wei
    Zhang, Hulin
    Gao, Min
    Guo, Daqing
    Xia, Yang
    Lin, Yuan
    ADVANCED SCIENCE, 2017, 4 (11):
  • [46] Materials, Structure, and Interface of Stretchable Interconnects for Wearable Bioelectronics
    Li, Yue
    Veronica, Asmita
    Ma, Jiahao
    Nyein, Hnin Yin Yin
    ADVANCED MATERIALS, 2024,
  • [47] An intrinsically stretchable power-source system for bioelectronics
    Cheng, Ping
    Dai, Shilei
    Liu, Youdi
    Li, Yang
    Hayashi, Hidenori
    Papani, Rithvik
    Su, Qi
    Li, Nan
    Dai, Yahao
    Liu, Wei
    Hu, Huawei
    Liu, Zixiao
    Jin, Lihua
    Hibino, Narutoshi
    Wen, Zhen
    Sun, Xuhui
    Wang, Sihong
    DEVICE, 2024, 2 (01):
  • [48] Recent Advances of Energy Solutions for Implantable Bioelectronics
    Sheng, Hongwei
    Zhang, Xuetao
    Liang, Jie
    Shao, Mingjiao
    Xie, Erqing
    Yu, Cunjiang
    Lan, Wei
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (17)
  • [49] Bioelectronics and Interfaces Using Monolayer Graphene
    Macedo, Lucyano J. A.
    Iost, Rodrigo M.
    Hassan, Ayaz
    Balasubramanian, Kannan
    Crespilho, Frank N.
    CHEMELECTROCHEM, 2019, 6 (01) : 31 - 59
  • [50] Lubricant-Infused Polymeric Interfaces: A Stretchable and Anti-Fouling Surface for Implantable Biomaterials
    Kim, Tae Young
    An, Soohwan
    Kim, Young
    Han, Seung Yeop
    Lee, Jeuhee
    Park, Kijun
    Kim, Sangin
    Park, Jae
    Kim, Soo A.
    Chung, Justin J.
    Cho, Seung-Woo
    Seo, Jungmok
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (14)