Softening, Conformable, and Stretchable Conductors for Implantable Bioelectronics Interfaces

被引:0
|
作者
Rocha-Flores, Pedro E. [1 ]
Chitrakar, Chandani [2 ]
Rodriguez-Lopez, Ovidio [3 ]
Ren, Yao [4 ]
Joshi-Imre, Alexandra [5 ]
Parikh, Ankit R. [4 ]
Asan, Ahmet S. [6 ]
Mcintosh, James R. [6 ]
Garcia-Sandoval, Aldo [1 ]
Pancrazio, Joseph J. [1 ,5 ]
Ecker, Melanie [2 ]
Lu, Hongbing [4 ]
Carmel, Jason B. [6 ]
Voit, Walter E. [1 ,4 ,7 ]
机构
[1] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75080 USA
[2] Univ North Texas, Dept Biomed Engn, Denton, TX 76203 USA
[3] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[4] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[5] Univ Texas Dallas, Off Res & Innovat, Richardson, TX 75080 USA
[6] COLUMBIA UNIV, DEPT NEUROL, NEW YORK, NY 10027 USA
[7] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
来源
ADVANCED MATERIALS TECHNOLOGIES | 2025年 / 10卷 / 06期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
biomedical implants; flexible electronics; micro-hole arrays; neural modulation; softening polymers; spinal cord stimulation; stretchable conductors; MICROELECTRODES; STIMULATION; POLYMER;
D O I
10.1002/admt.202401047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Neural implantable devices serve as electronic interfaces facilitating communication between the body and external electronic systems. These bioelectronic systems ideally possess stable electrical conductivity, flexibility, and stretchability to accommodate dynamic movements within the body. However, achieving both high electrical conductivity and mechanical compatibility remains a challenge. Effective electrical conductors tend to be rigid and stiff, leading to a substantial mechanical mismatch with bodily tissues. On the other hand, highly stretchable polymers, while mechanically compatible, often suffer from limited compatibility with lithography techniques and reduced electrical stability. Therefore, there exists a pressing need to develop electromechanically stable neural interfaces that enable precise communication with biological tissues. In this study, a polymer that is softening, flexible, conformal, and compatible with lithography to microfabricate perforated thin-film architectures is utilized. These architectures offer stretchability and improved mechanical compatibility. Three distinct geometries are evaluated both mechanically and electrically under in vitro conditions that simulate physiological environments. Notably, the Peano structure demonstrates minimal changes in resistance, varying less than 1.5x even when subjected to approximate to 150% strain. Furthermore, devices exhibit a maximum mechanical elongation before fracture, reaching 220%. Finally, the application of multi-electrode spinal cord leads employing titanium nitride for neural stimulation in rat models is demonstrated.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Nanomaterials-based flexible and stretchable bioelectronics
    Jun-Kyul Song
    Kyungsik Do
    Ja Hoon Koo
    Donghee Son
    Dae-Hyeong Kim
    MRS Bulletin, 2019, 44 : 643 - 656
  • [32] Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation
    Dong, Ruihua
    Wang, Lulu
    Li, Zebin
    Jiao, Jincheng
    Wu, Yan
    Feng, Zhuowei
    Wang, Xufang
    Chen, Minglong
    Cui, Chang
    Lu, Yi
    Jiang, Xingyu
    ACS NANO, 2024, 18 (02) : 1702 - 1713
  • [33] Hydrogels and conductive hydrogels for implantable bioelectronics
    Kutay Sagdic
    Emilio Fernández-Lavado
    Massimo Mariello
    Outman Akouissi
    Stéphanie P. Lacour
    MRS Bulletin, 2023, 48 : 495 - 505
  • [34] Carbon-based implantable bioelectronics
    Liu, Shan
    Li, Xue
    Gan, Li
    Liu, Sutong
    Luo, Hongzhi
    Du, Xiaoxin
    Loutfy, Samah A.
    Tan, Hong
    Guo, Jinhong
    Li, Chenzhong
    APPLIED PHYSICS REVIEWS, 2024, 11 (03):
  • [35] Magnetoelectrics for Implantable Bioelectronics: Progress to Date
    Alrashdan, Fatima
    Yang, Kaiyuan
    Robinson, Jacob T.
    ACCOUNTS OF CHEMICAL RESEARCH, 2024, 57 (20) : 2953 - 2962
  • [36] Hydrogels and conductive hydrogels for implantable bioelectronics
    Sagdic, Kutay
    Fernandez-Lavado, Emilio
    Mariello, Massimo
    Akouissi, Outman
    Lacour, Stephanie P.
    MRS BULLETIN, 2023, 48 (05) : 495 - 505
  • [37] Nanomaterials-based flexible and stretchable bioelectronics
    Song, Jun-Kyul
    Do, Kyungsik
    Koo, Ja Hoon
    Son, Donghee
    Kim, Dae-Hyeong
    MRS BULLETIN, 2019, 44 (08) : 643 - 656
  • [38] Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics
    Choi, Suji
    Han, Sang Ihn
    Jung, Dongjun
    Hwang, Hye Jin
    Lim, Chaehong
    Bae, Soochan
    Park, Ok Kyu
    Tschabrunn, Cory M.
    Lee, Mincheol
    Bae, Sun Youn
    Yu, Ji Woong
    Ryu, Ji Ho
    Lee, Sang-Woo
    Park, Kyungpyo
    Kang, Peter M.
    Lee, Won Bo
    Nezafat, Reza
    Hyeon, Taeghwan
    Kim, Dae-Hyeong
    NATURE NANOTECHNOLOGY, 2018, 13 (11) : 1048 - +
  • [39] Bioinspired Strategies for Stretchable Conductors
    Zhang Feilong
    Chen Xiaodong
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2023, 39 (01) : 30 - 41
  • [40] A Guide to Printed Stretchable Conductors
    Sakorikar, Tushar
    Mihaliak, Nikolas
    Krisnadi, Febby
    Ma, Jinwoo
    Kim, Tae-il
    Kong, Minsik
    Awartani, Omar
    Dickey, Michael D.
    CHEMICAL REVIEWS, 2024, 124 (03) : 860 - 888