Softening, Conformable, and Stretchable Conductors for Implantable Bioelectronics Interfaces

被引:0
|
作者
Rocha-Flores, Pedro E. [1 ]
Chitrakar, Chandani [2 ]
Rodriguez-Lopez, Ovidio [3 ]
Ren, Yao [4 ]
Joshi-Imre, Alexandra [5 ]
Parikh, Ankit R. [4 ]
Asan, Ahmet S. [6 ]
Mcintosh, James R. [6 ]
Garcia-Sandoval, Aldo [1 ]
Pancrazio, Joseph J. [1 ,5 ]
Ecker, Melanie [2 ]
Lu, Hongbing [4 ]
Carmel, Jason B. [6 ]
Voit, Walter E. [1 ,4 ,7 ]
机构
[1] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75080 USA
[2] Univ North Texas, Dept Biomed Engn, Denton, TX 76203 USA
[3] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[4] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[5] Univ Texas Dallas, Off Res & Innovat, Richardson, TX 75080 USA
[6] COLUMBIA UNIV, DEPT NEUROL, NEW YORK, NY 10027 USA
[7] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
来源
ADVANCED MATERIALS TECHNOLOGIES | 2025年 / 10卷 / 06期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
biomedical implants; flexible electronics; micro-hole arrays; neural modulation; softening polymers; spinal cord stimulation; stretchable conductors; MICROELECTRODES; STIMULATION; POLYMER;
D O I
10.1002/admt.202401047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Neural implantable devices serve as electronic interfaces facilitating communication between the body and external electronic systems. These bioelectronic systems ideally possess stable electrical conductivity, flexibility, and stretchability to accommodate dynamic movements within the body. However, achieving both high electrical conductivity and mechanical compatibility remains a challenge. Effective electrical conductors tend to be rigid and stiff, leading to a substantial mechanical mismatch with bodily tissues. On the other hand, highly stretchable polymers, while mechanically compatible, often suffer from limited compatibility with lithography techniques and reduced electrical stability. Therefore, there exists a pressing need to develop electromechanically stable neural interfaces that enable precise communication with biological tissues. In this study, a polymer that is softening, flexible, conformal, and compatible with lithography to microfabricate perforated thin-film architectures is utilized. These architectures offer stretchability and improved mechanical compatibility. Three distinct geometries are evaluated both mechanically and electrically under in vitro conditions that simulate physiological environments. Notably, the Peano structure demonstrates minimal changes in resistance, varying less than 1.5x even when subjected to approximate to 150% strain. Furthermore, devices exhibit a maximum mechanical elongation before fracture, reaching 220%. Finally, the application of multi-electrode spinal cord leads employing titanium nitride for neural stimulation in rat models is demonstrated.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Flexible and Stretchable Bioelectronics
    Chitrakar, Chandani
    Hedrick, Eric
    Adegoke, Lauren
    Ecker, Melanie
    MATERIALS, 2022, 15 (05)
  • [12] A Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics
    Pham, Tuan-Anh
    Nguyen, Tuan-Khoa
    Vadivelu, Raja Kumar
    Dinh, Toan
    Qamar, Afzaal
    Yadav, Sharda
    Yamauchi, Yusuke
    Rogers, John A.
    Nguyen, Nam-Trung
    Phan, Hoang-Phuong
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (43)
  • [13] Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene
    Dallinger, Alexander
    Keller, Kirill
    Fitzek, Harald
    Greco, Francesco
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (17) : 19855 - 19865
  • [14] Soft Implantable Bioelectronics
    Koo, Ja Hoon
    Song, Jun-Kyul
    Kim, Dae-Hyeong
    Son, Donghee
    ACS MATERIALS LETTERS, 2021, 3 (11): : 1528 - 1540
  • [15] Implantable Batteries for Bioelectronics
    Jiao, Yiding
    He, Er
    Ye, Tingting
    Wang, Yuanzhen
    Yin, Haotian
    Zhang, Ye
    ACCOUNTS OF MATERIALS RESEARCH, 2025, 6 (02): : 221 - 232
  • [16] Flexible and stretchable bioelectronics for organoids
    Jaeyong Lee
    Jia Liu
    Med-X, 2025, 3 (1):
  • [17] Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility
    Zhuang, Qiuna
    Yao, Kuanming
    Wu, Mengge
    Lei, Zhuogui
    Chen, Fan
    Li, Jiyu
    Mei, Quanjing
    Zhou, Yingying
    Huang, Qiyao
    Zhao, Xin
    Li, Ying
    Yu, Xinge
    Zheng, Zijian
    SCIENCE ADVANCES, 2023, 9 (22)
  • [18] Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics
    Suji Choi
    Sang Ihn Han
    Dongjun Jung
    Hye Jin Hwang
    Chaehong Lim
    Soochan Bae
    Ok Kyu Park
    Cory M. Tschabrunn
    Mincheol Lee
    Sun Youn Bae
    Ji Woong Yu
    Ji Ho Ryu
    Sang-Woo Lee
    Kyungpyo Park
    Peter M. Kang
    Won Bo Lee
    Reza Nezafat
    Taeghwan Hyeon
    Dae-Hyeong Kim
    Nature Nanotechnology, 2018, 13 : 1048 - 1056
  • [19] Semi-Implantable Bioelectronics
    Jiaru Fang
    Shuang Huang
    Fanmao Liu
    Gen He
    Xiangling Li
    Xinshuo Huang
    Hui-jiuan Chen
    Xi Xie
    Nano-Micro Letters, 2022, 14 (07) : 360 - 414
  • [20] Semi-Implantable Bioelectronics
    Fang, Jiaru
    Huang, Shuang
    Liu, Fanmao
    He, Gen
    Li, Xiangling
    Huang, Xinshuo
    Chen, Hui-jiuan
    Xie, Xi
    NANO-MICRO LETTERS, 2022, 14 (01)