Softening, Conformable, and Stretchable Conductors for Implantable Bioelectronics Interfaces

被引:0
|
作者
Rocha-Flores, Pedro E. [1 ]
Chitrakar, Chandani [2 ]
Rodriguez-Lopez, Ovidio [3 ]
Ren, Yao [4 ]
Joshi-Imre, Alexandra [5 ]
Parikh, Ankit R. [4 ]
Asan, Ahmet S. [6 ]
Mcintosh, James R. [6 ]
Garcia-Sandoval, Aldo [1 ]
Pancrazio, Joseph J. [1 ,5 ]
Ecker, Melanie [2 ]
Lu, Hongbing [4 ]
Carmel, Jason B. [6 ]
Voit, Walter E. [1 ,4 ,7 ]
机构
[1] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75080 USA
[2] Univ North Texas, Dept Biomed Engn, Denton, TX 76203 USA
[3] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[4] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[5] Univ Texas Dallas, Off Res & Innovat, Richardson, TX 75080 USA
[6] COLUMBIA UNIV, DEPT NEUROL, NEW YORK, NY 10027 USA
[7] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
来源
ADVANCED MATERIALS TECHNOLOGIES | 2025年 / 10卷 / 06期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
biomedical implants; flexible electronics; micro-hole arrays; neural modulation; softening polymers; spinal cord stimulation; stretchable conductors; MICROELECTRODES; STIMULATION; POLYMER;
D O I
10.1002/admt.202401047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Neural implantable devices serve as electronic interfaces facilitating communication between the body and external electronic systems. These bioelectronic systems ideally possess stable electrical conductivity, flexibility, and stretchability to accommodate dynamic movements within the body. However, achieving both high electrical conductivity and mechanical compatibility remains a challenge. Effective electrical conductors tend to be rigid and stiff, leading to a substantial mechanical mismatch with bodily tissues. On the other hand, highly stretchable polymers, while mechanically compatible, often suffer from limited compatibility with lithography techniques and reduced electrical stability. Therefore, there exists a pressing need to develop electromechanically stable neural interfaces that enable precise communication with biological tissues. In this study, a polymer that is softening, flexible, conformal, and compatible with lithography to microfabricate perforated thin-film architectures is utilized. These architectures offer stretchability and improved mechanical compatibility. Three distinct geometries are evaluated both mechanically and electrically under in vitro conditions that simulate physiological environments. Notably, the Peano structure demonstrates minimal changes in resistance, varying less than 1.5x even when subjected to approximate to 150% strain. Furthermore, devices exhibit a maximum mechanical elongation before fracture, reaching 220%. Finally, the application of multi-electrode spinal cord leads employing titanium nitride for neural stimulation in rat models is demonstrated.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics
    Yuyao Lu
    Geng Yang
    Shenqiang Wang
    Yuqi Zhang
    Yihui Jian
    Long He
    Ting Yu
    Huayu Luo
    Depeng Kong
    Yunlei Xianyu
    Bo Liang
    Tao Liu
    Xiaoping Ouyang
    Jicheng Yu
    Xinyang Hu
    Huayong Yang
    Zhen Gu
    Wei Huang
    Kaichen Xu
    Nature Electronics, 2024, 7 : 51 - 65
  • [2] Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics
    Lu, Yuyao
    Yang, Geng
    Wang, Shenqiang
    Zhang, Yuqi
    Jian, Yihui
    He, Long
    Yu, Ting
    Luo, Huayu
    Kong, Depeng
    Xianyu, Yunlei
    Liang, Bo
    Liu, Tao
    Ouyang, Xiaoping
    Yu, Jicheng
    Hu, Xinyang
    Yang, Huayong
    Gu, Zhen
    Huang, Wei
    Xu, Kaichen
    NATURE ELECTRONICS, 2023, 7 (1) : 51 - 65
  • [3] Stretchable Functional Nanocomposites for Soft Implantable Bioelectronics
    Kim, Hye Jin
    Choi, Heewon
    Kim, Dae-Hyeong
    Son, Donghee
    NANO LETTERS, 2024, 24 (28) : 8453 - 8464
  • [4] Stretchable conductive nanocomposite for wearable and implantable bioelectronics
    Jung, Dongjun
    Kim, Dae-Hyeong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [5] Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics
    Wang, Chunya
    Yokota, Tomoyuki
    Someya, Takao
    CHEMICAL REVIEWS, 2021, 121 (04) : 2109 - 2146
  • [6] Stretchable and conformable synapse memristors for wearable and implantable electronics
    Yang, Mihua
    Zhao, Xiaoli
    Tang, Qingxin
    Cui, Nan
    Wang, Zhongqiang
    Tong, Yanhong
    Liu, Yichun
    NANOSCALE, 2018, 10 (38) : 18135 - 18144
  • [7] Softening implantable bioelectronics: Material designs, applications, and future directions
    Oh, Subin
    Lee, Simok
    Kim, Sung Woo
    Kim, Choong Yeon
    Jeong, Eun Young
    Lee, Juhyun
    Kwon, Do A.
    Jeong, Jae-Woong
    BIOSENSORS & BIOELECTRONICS, 2024, 258
  • [8] Conformable Hybrid Systems for Implantable Bioelectronic Interfaces
    Fallegger, Florian
    Schiavone, Giuseppe
    Lacour, Stephanie P.
    ADVANCED MATERIALS, 2020, 32 (15)
  • [9] Convergence of Implantable Bioelectronics and Brain-Computer Interfaces
    Huynh, Minh Anh
    Nguyen, Thanh-Ha
    Nguyen, Tuan-Khoa
    Nguyen, Nam-Trung
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (11) : 5777 - 5793
  • [10] Fully 3D-Printed, Stretchable, and Conformable Haptic Interfaces
    Grasso, Giulio
    Rosset, Samuel
    Shea, Herbert
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (20)