Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random steps

被引:0
|
作者
Apers, Simon [1 ]
Gribling, Sander [2 ]
Szilagyi, Daniel [3 ]
机构
[1] Univ Paris Cite, IRIF, CNRS, F-75013 Paris, France
[2] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
[3] Univ Paris Cite, IRIF, F-75013 Paris, France
关键词
Markov chains; logconcave sampling; Metropolis-Hastings algorithm; numer- ical integration; Hamiltonian Monte Carlo;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hamiltonian Monte Carlo (HMC) is a Markov chain algorithm for sampling from a high- dimensional distribution with density e( -f ( x )) , given access to the gradient of f . A particular case of interest is that of a d-dimensional Gaussian distribution with covariance matrix Sigma, in which case f (x) = x(T)Sigma (- 1) x . We show that Metropolis-adjusted HMC can sample from a distribution that is epsilon-close to a Gaussian in total variation distance using O e ( root kappa d( 1 / 4) log(1 /epsilon )) gradient queries, where epsilon > 0 and kappa is the condition number of . Our algorithm uses long and random integration times for the Hamiltonian dynamics, and it creates a warm start by first running HMC without a Metropolis adjustment. This contrasts with (and was motivated by) recent results that give an Omega e(kappa d(1/2)) query lower bound for HMC with a fixed integration times or from a cold start, even for the Gaussian case.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Efficient cosmological parameter estimation with Hamiltonian Monte Carlo technique
    Hajian, Amir
    PHYSICAL REVIEW D, 2007, 75 (08)
  • [32] Autotuning Hamiltonian Monte Carlo for efficient generalized nullspace exploration
    Fichtner, Andreas
    Zunino, Andrea
    Gebraad, Lars
    Boehm, Christian
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 227 (02) : 941 - 968
  • [33] Double Hierarchies for Efficient Sampling in Monte Carlo Rendering
    Bus, Norbert
    Boubekeur, Tamy
    ACM SIGGRAPH 2017 TALKS, 2017,
  • [34] Characterization and efficient Monte Carlo sampling of disordered microphases
    Zheng, Mingyuan
    Charbonneau, Patrick
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (24):
  • [35] Optimum and efficient sampling for variational quantum Monte Carlo
    Trail, J. R.
    Maezono, Ryo
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (17):
  • [36] Multiensemble sampling: An alternative efficient Monte Carlo technique
    Han, KK
    PHYSICAL REVIEW E, 1996, 54 (06): : 6906 - 6910
  • [37] Hamiltonian Monte Carlo acceleration using surrogate functions with random bases
    Cheng Zhang
    Babak Shahbaba
    Hongkai Zhao
    Statistics and Computing, 2017, 27 : 1473 - 1490
  • [38] Hamiltonian Monte Carlo acceleration using surrogate functions with random bases
    Zhang, Cheng
    Shahbaba, Babak
    Zhao, Hongkai
    STATISTICS AND COMPUTING, 2017, 27 (06) : 1473 - 1490
  • [39] Hamiltonian Monte Carlo with Random Effect for Analyzing Cyclist Crash Severity
    Rezapour, Mahdi
    Ksaibati, Khaled
    SIGNALS, 2021, 2 (03): : 527 - 539
  • [40] Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
    Havasi, Marton
    Hernandez-Lobato, Jose Miguel
    Jose Murillo-Fuentes, Juan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31