Efficient cosmological parameter estimation with Hamiltonian Monte Carlo technique

被引:39
|
作者
Hajian, Amir
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08542 USA
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
关键词
D O I
10.1103/PhysRevD.75.083525
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Traditional Markov Chain Monte Carlo methods suffer from low acceptance rate, slow mixing, and low efficiency in high dimensions. Hamiltonian Monte Carlo resolves this issue by avoiding the random walk. Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo (MCMC) technique built upon the basic principle of Hamiltonian mechanics. Hamiltonian dynamics allows the chain to move along trajectories of constant energy, taking large jumps in the parameter space with relatively inexpensive computations. This new technique improves the acceptance rate by a factor of 4 while reducing the correlations and boosts up the efficiency by almost a factor of D in a D-dimensional parameter space. Therefore shorter chains will be needed for a reliable parameter estimation comparing to a traditional MCMC chain yielding the same performance. Besides that, the HMC is well suited for sampling from non-Gaussian and curved distributions which are very hard to sample from using the traditional MCMC methods. The method is very simple to code and can be easily plugged into standard parameter estimation codes such as CosmoMC. In this paper we demonstrate how the HMC can be efficiently used in cosmological parameter estimation. Also we discuss possible ways of getting good estimates of the derivatives of (the log of) posterior which is needed for HMC.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation
    Dunkley, J
    Bucher, M
    Ferreira, PG
    Moodley, K
    Skordis, C
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (03) : 925 - 936
  • [2] Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems
    Andrei Kramer
    Ben Calderhead
    Nicole Radde
    [J]. BMC Bioinformatics, 15
  • [3] Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems
    Kramer, Andrei
    Calderhead, Ben
    Radde, Nicole
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [4] astroABC: An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation
    Jennings, E.
    Madigan, M.
    [J]. ASTRONOMY AND COMPUTING, 2017, 19 : 16 - 22
  • [5] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    [J]. 2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25
  • [6] Bayesian Hamiltonian Monte Carlo method for the estimation of pyrolysis parameter S1
    Luo, Kun
    Zong, Zhaoyun
    Yin, Xingyao
    Cao, Hong
    Lu, Minghui
    [J]. GEOPHYSICS, 2021, 86 (06) : M197 - M209
  • [7] Parameter estimation for X-ray scattering analysis with Hamiltonian Markov Chain Monte Carlo
    Jiang, Zhang
    Wang, Jin
    Tirrell, Matthew, V
    de Pablo, Juan J.
    Chen, Wei
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2022, 29 : 721 - 731
  • [8] Bayesian parameter estimation in chiral effective field theory using the Hamiltonian Monte Carlo method
    Svensson, Isak
    Ekstrom, Andreas
    Forssen, Christian
    [J]. PHYSICAL REVIEW C, 2022, 105 (01)
  • [9] A Splitting Hamiltonian Monte Carlo Method for Efficient Sampling
    Li, Lei
    Liu, Lin
    Peng, Yuzhou
    [J]. CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2023, 4 (01): : 41 - 73
  • [10] A survey of Monte Carlo methods for parameter estimation
    David Luengo
    Luca Martino
    Mónica Bugallo
    Víctor Elvira
    Simo Särkkä
    [J]. EURASIP Journal on Advances in Signal Processing, 2020