Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random steps

被引:0
|
作者
Apers, Simon [1 ]
Gribling, Sander [2 ]
Szilagyi, Daniel [3 ]
机构
[1] Univ Paris Cite, IRIF, CNRS, F-75013 Paris, France
[2] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
[3] Univ Paris Cite, IRIF, F-75013 Paris, France
关键词
Markov chains; logconcave sampling; Metropolis-Hastings algorithm; numer- ical integration; Hamiltonian Monte Carlo;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hamiltonian Monte Carlo (HMC) is a Markov chain algorithm for sampling from a high- dimensional distribution with density e( -f ( x )) , given access to the gradient of f . A particular case of interest is that of a d-dimensional Gaussian distribution with covariance matrix Sigma, in which case f (x) = x(T)Sigma (- 1) x . We show that Metropolis-adjusted HMC can sample from a distribution that is epsilon-close to a Gaussian in total variation distance using O e ( root kappa d( 1 / 4) log(1 /epsilon )) gradient queries, where epsilon > 0 and kappa is the condition number of . Our algorithm uses long and random integration times for the Hamiltonian dynamics, and it creates a warm start by first running HMC without a Metropolis adjustment. This contrasts with (and was motivated by) recent results that give an Omega e(kappa d(1/2)) query lower bound for HMC with a fixed integration times or from a cold start, even for the Gaussian case.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
    Heinonen, Markus
    Mannerstrom, Henrik
    Rousu, Juho
    Kaski, Samuel
    Lahdesmaki, Harri
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 732 - 740
  • [22] SEQUENTIAL MONTE CARLO SAMPLING FOR SYSTEMS WITH FRACTIONAL GAUSSIAN PROCESSES
    Urteaga, Inigo
    Bugallo, Monica F.
    Djuric, Petar M.
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1246 - 1250
  • [23] Boosting Monte Carlo sampling with a non-Gaussian fit
    Amendola, Luca
    Gomez-Valent, Adria
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (01) : 181 - 193
  • [24] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    PHYSICS LETTERS A, 1999, 258 (01) : 6 - 14
  • [25] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Huang, CQ
    Jiang, JQ
    Luo, XQ
    Moriarty, KJM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 953 - 955
  • [26] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [27] Markov Chain Monte Carlo Algorithms for Lattice Gaussian Sampling
    Wang, Zheng
    Ling, Cong
    Hanrot, Guillaume
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1489 - 1493
  • [28] A random-sampling method as an efficient alternative to variational Monte Carlo for solving Gutzwiller wavefunctions
    Zhang, Feng
    Ye, Zhuo
    Yao, Yong-Xin
    Wang, Cai-Zhuang
    Ho, Kai-Ming
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (12):
  • [29] SYMMETRICALLY PROCESSED SPLITTING INTEGRATORS FOR ENHANCED HAMILTONIAN MONTE CARLO SAMPLING
    Blanes, S.
    Calvo, M. P.
    Casas, F.
    Sanz-Serna, J. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3357 - A3371
  • [30] A Hamiltonian Monte Carlo Method for Non-Smooth Energy Sampling
    Chaari, Lotfi
    Tourneret, Jean-Yves
    Chaux, Caroline
    Batatia, Hadj
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (21) : 5585 - 5594