SpDRAM: Efficient In-DRAM Acceleration of Sparse Matrix-Vector Multiplication

被引:0
|
作者
Kang, Jieui [1 ]
Choi, Soeun [1 ]
Lee, Eunjin [1 ]
Sim, Jaehyeong [2 ]
机构
[1] Ewha Womans Univ, Artificial Intelligence Convergence, Seoul 03760, South Korea
[2] Ewha Womans Univ, Dept Comp Sci & Engn, Seoul 03760, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Random access memory; Sparse matrices; Computer architecture; Logic; Vectors; Turning; System-on-chip; Space exploration; Sorting; SRAM cells; Processing-in-memory; SpMV; sparsity; DRAM; ARCHITECTURE;
D O I
10.1109/ACCESS.2024.3505622
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce novel sparsity-aware in-DRAM matrix mapping techniques and a correspondingDRAM-based acceleration framework, termedSpDRAM, which utilizes a triple row activation schemeto efficiently handle sparse matrix-vector multiplication (SpMV). We found that reducing operationsby sparsity relies heavily on how matrices are mapped into DRAM banks, which operate row byrow. These banks operate row by row. From this insight, we developed two distinct matrix mappingtechniques aimed at maximizing the reduction of row operations with minimal design overhead: Output-aware Matrix Permutation (OMP) and Zero-aware Matrix Column Sorting (ZMCS). Additionally,we propose a Multiplication Deferring (MD) scheme that leverages the prevalent bit-level sparsity inmatrix values to decrease the effective bit-width required for in-bank multiplication operations. Evaluationresults demonstrate that the combination of our in-DRAM acceleration methods outperforms the latestDRAM-based PIM accelerator for SpMV, achieving a performance increase of up to 7.54xand a 22.4ximprovement in energy efficiency in a wide range of SpMV tasks
引用
收藏
页码:176009 / 176021
页数:13
相关论文
共 50 条
  • [41] Optimization techniques for sparse matrix-vector multiplication on GPUs
    Maggioni, Marco
    Berger-Wolf, Tanya
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2016, 93-94 : 66 - 86
  • [42] IMAGE EDITING BASED ON SPARSE MATRIX-VECTOR MULTIPLICATION
    Wang, Ying
    Yan, Hongping
    Pan, Chunhong
    Xiang, Shiming
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1317 - 1320
  • [43] High performance sparse matrix-vector multiplication on FPGA
    Zou, Dan
    Dou, Yong
    Guo, Song
    Ni, Shice
    IEICE ELECTRONICS EXPRESS, 2013, 10 (17):
  • [44] AN EFFICIENT PARALLEL ALGORITHM FOR MATRIX-VECTOR MULTIPLICATION
    HENDRICKSON, B
    LELAND, R
    PLIMPTON, S
    INTERNATIONAL JOURNAL OF HIGH SPEED COMPUTING, 1995, 7 (01): : 73 - 88
  • [45] Efficient dense matrix-vector multiplication on GPU
    He, Guixia
    Gao, Jiaquan
    Wang, Jun
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (19):
  • [46] A TASK-SCHEDULING APPROACH FOR EFFICIENT SPARSE SYMMETRIC MATRIX-VECTOR MULTIPLICATION ON A GPU
    Mironowicz, P.
    Dziekonski, A.
    Mrozowski, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : C643 - C666
  • [47] An Efficient Two-Dimensional Blocking Strategy for Sparse Matrix-Vector Multiplication on GPUs
    Ashari, Arash
    Sedaghati, Naser
    Eisenlohr, John
    Sadayappan, P.
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, (ICS'14), 2014, : 273 - 282
  • [48] CSR&RV: An Efficient Value Compression Format for Sparse Matrix-Vector Multiplication
    Yan, Junjun
    Chen, Xinhai
    Liu, Jie
    NETWORK AND PARALLEL COMPUTING, NPC 2022, 2022, 13615 : 54 - 60
  • [49] Efficient multithreaded untransposed, transposed or symmetric sparse matrix-vector multiplication with the Recursive Sparse Blocks format
    Martone, Michele
    PARALLEL COMPUTING, 2014, 40 (07) : 251 - 270
  • [50] Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed Sparse Blocks
    Buluc, Aydin
    Fineman, Jeremy T.
    Frigo, Matteo
    Gilbert, John R.
    Leiserson, Charles E.
    SPAA'09: PROCEEDINGS OF THE TWENTY-FIRST ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2009, : 233 - 244