SpDRAM: Efficient In-DRAM Acceleration of Sparse Matrix-Vector Multiplication

被引:0
|
作者
Kang, Jieui [1 ]
Choi, Soeun [1 ]
Lee, Eunjin [1 ]
Sim, Jaehyeong [2 ]
机构
[1] Ewha Womans Univ, Artificial Intelligence Convergence, Seoul 03760, South Korea
[2] Ewha Womans Univ, Dept Comp Sci & Engn, Seoul 03760, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Random access memory; Sparse matrices; Computer architecture; Logic; Vectors; Turning; System-on-chip; Space exploration; Sorting; SRAM cells; Processing-in-memory; SpMV; sparsity; DRAM; ARCHITECTURE;
D O I
10.1109/ACCESS.2024.3505622
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce novel sparsity-aware in-DRAM matrix mapping techniques and a correspondingDRAM-based acceleration framework, termedSpDRAM, which utilizes a triple row activation schemeto efficiently handle sparse matrix-vector multiplication (SpMV). We found that reducing operationsby sparsity relies heavily on how matrices are mapped into DRAM banks, which operate row byrow. These banks operate row by row. From this insight, we developed two distinct matrix mappingtechniques aimed at maximizing the reduction of row operations with minimal design overhead: Output-aware Matrix Permutation (OMP) and Zero-aware Matrix Column Sorting (ZMCS). Additionally,we propose a Multiplication Deferring (MD) scheme that leverages the prevalent bit-level sparsity inmatrix values to decrease the effective bit-width required for in-bank multiplication operations. Evaluationresults demonstrate that the combination of our in-DRAM acceleration methods outperforms the latestDRAM-based PIM accelerator for SpMV, achieving a performance increase of up to 7.54xand a 22.4ximprovement in energy efficiency in a wide range of SpMV tasks
引用
收藏
页码:176009 / 176021
页数:13
相关论文
共 50 条
  • [21] On improving the performance of sparse matrix-vector multiplication
    White, JB
    Sadayappan, P
    FOURTH INTERNATIONAL CONFERENCE ON HIGH-PERFORMANCE COMPUTING, PROCEEDINGS, 1997, : 66 - 71
  • [22] Sparse matrix-vector multiplication -: Final solution?
    Simecek, Ivan
    Tvrdik, Pavel
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2008, 4967 : 156 - 165
  • [23] Leveraging Memory Copy Overlap for Efficient Sparse Matrix-Vector Multiplication on GPUs
    Zeng, Guangsen
    Zou, Yi
    ELECTRONICS, 2023, 12 (17)
  • [24] Efficient Sparse Matrix-Vector Multiplication on GPUs using the CSR Storage Format
    Greathouse, Joseph L.
    Daga, Mayank
    SC14: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2014, : 769 - 780
  • [25] Prover Efficient Public Verification of Dense or Sparse/Structured Matrix-Vector Multiplication
    Dumas, Jean-Guillaume
    Zucca, Vincent
    INFORMATION SECURITY AND PRIVACY, ACISP 2017, PT II, 2017, 10343 : 115 - 134
  • [26] Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication
    Yilmaz, Buse
    Aktemur, Baris
    Garzaran, Maria J.
    Kamin, Sam
    Kirac, Furkan
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2016, 13 (01)
  • [27] Load-balancing in sparse matrix-vector multiplication
    Nastea, SG
    Frieder, O
    ElGhazawi, T
    EIGHTH IEEE SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 1996, : 218 - 225
  • [28] Energy Evaluation of Sparse Matrix-Vector Multiplication on GPU
    Benatia, Akrem
    Ji, Weixing
    Wang, Yizhuo
    Shi, Feng
    2016 SEVENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2016,
  • [29] Sparse Matrix-Vector Multiplication Based on Online Arithmetic
    Cherati, Sahar Moradi
    Jaberipur, Ghassem
    Sousa, Leonel
    IEEE ACCESS, 2024, 12 : 87653 - 87664
  • [30] Implementing Sparse Matrix-Vector Multiplication with QCSR on GPU
    Zhang, Jilin
    Liu, Enyi
    Wan, Jian
    Ren, Yongjian
    Yue, Miao
    Wang, Jue
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (02): : 473 - 482