Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication

被引:10
|
作者
Yilmaz, Buse [1 ]
Aktemur, Baris [1 ]
Garzaran, Maria J. [2 ,3 ,5 ]
Kamin, Sam [2 ,4 ,5 ]
Kirac, Furkan [1 ]
机构
[1] Ozyegin Univ, TR-34794 Istanbul, Turkey
[2] Univ Illinois, Urbana, IL USA
[3] Intel Corp, Santa Clara, CA 95051 USA
[4] Google, Bangalore, Karnataka, India
[5] Univ Illinois, 201 N Goodwin Ave, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Performance; Experimentation; Measurement; Autotuning; runtime code generation; sparse matrix-vector multiplication; GENERATION;
D O I
10.1145/2851500
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Runtime specialization is used for optimizing programs based on partial information available only at runtime. In this paper we apply autotuning on runtime specialization of Sparse Matrix-Vector Multiplication to predict a best specialization method among several. In 91% to 96% of the predictions, either the best or the second-best method is chosen. Predictions achieve average speedups that are very close to the speedups achievable when only the best methods are used. By using an efficient code generator and a carefully designed set of matrix features, we show the runtime costs can be amortized to bring performance benefits for many real-world cases.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Optimization by Runtime Specialization for Sparse Matrix-Vector Multiplication
    Kamin, Sam
    Garzaran, Maria Jesus
    Aktemur, Baris
    Xu, Danqing
    Yilmaz, Buse
    Chen, Zhongbo
    [J]. ACM SIGPLAN NOTICES, 2015, 50 (03) : 93 - 102
  • [2] Sparse Matrix-Vector Multiplication on GPGPUs
    Filippone, Salvatore
    Cardellini, Valeria
    Barbieri, Davide
    Fanfarillo, Alessandro
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):
  • [3] GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
    Tao, Yuan
    Deng, Yangdong
    Mu, Shuai
    Zhang, Zhenzhong
    Zhu, Mingfa
    Xiao, Limin
    Ruan, Li
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14): : 3771 - 3789
  • [4] Adaptive Runtime Tuning of Parallel Sparse Matrix-Vector Multiplication on Distributed Memory Systems
    Lee, Seyong
    Eigenmann, Rudolf
    [J]. ICS'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, 2008, : 195 - 204
  • [5] Vector ISA extension for sparse matrix-vector multiplication
    Vassiliadis, S
    Cotofana, S
    Stathis, P
    [J]. EURO-PAR'99: PARALLEL PROCESSING, 1999, 1685 : 708 - 715
  • [6] Node aware sparse matrix-vector multiplication
    Bienz, Amanda
    Gropp, William D.
    Olson, Luke N.
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 130 : 166 - 178
  • [7] Sparse Matrix-Vector Multiplication on a Reconfigurable Supercomputer
    DuBois, David
    DuBois, Andrew
    Connor, Carolyn
    Poole, Steve
    [J]. PROCEEDINGS OF THE SIXTEENTH IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2008, : 239 - +
  • [8] Understanding the performance of sparse matrix-vector multiplication
    Goumas, Georgios
    Kourtis, Kornilios
    Anastopoulos, Nikos
    Karakasis, Vasileios
    Koziris, Nectarios
    [J]. PROCEEDINGS OF THE 16TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, 2008, : 283 - +
  • [9] Sparse matrix-vector multiplication design on FPGAs
    Sun, Junqing
    Peterson, Gregory
    Storaasli, Olaf
    [J]. FCCM 2007: 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2007, : 349 - +
  • [10] STRUCTURED SPARSE MATRIX-VECTOR MULTIPLICATION ON A MASPAR
    DEHN, T
    EIERMANN, M
    GIEBERMANN, K
    SPERLING, V
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (06): : T534 - T538