Genome-Wide Identification and Characterization of MYB Transcription Factors in Sudan Grass under Drought Stress

被引:0
|
作者
Liu, Qiuxu [1 ]
Xu, Yalin [1 ]
Li, Xiangyan [1 ]
Qi, Tiangang [1 ]
Li, Bo [1 ]
Wang, Hong [1 ]
Zhu, Yongqun [1 ]
机构
[1] Sichuan Acad Agr Sci, Inst Agr Resources & Environm, Chengdu 610066, Peoples R China
来源
PLANTS-BASEL | 2024年 / 13卷 / 18期
关键词
Sudan grass; drought stress; genome-wide analysis; MYB transcription factors; FUNCTIONAL-ANALYSIS; PROTEIN; ARABIDOPSIS; EXPRESSION; ENCODES; GENES; SEQUENCE; DATABASE; QUALITY; DREB2A;
D O I
10.3390/plants13182645
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sudan grass (Sorghum sudanense S.) is a warm-season annual grass with high yield, rich nutritional value, good regeneration, and tolerance to biotic and abiotic stresses. However, prolonged drought affects the yield and quality of Sudan grass. As one of the largest families of multifunctional transcription factors in plants, MYB is widely involved in regulating plant growth and development, hormonal signaling, and stress responses at the gene transcription level. However, the regulatory role of MYB genes has not been well characterized in Sudan grass under abiotic stress. In this study, 113 MYB genes were identified in the Sudan grass genome and categorized into three groups by phylogenetic analysis. The promoter regions of SsMYB genes contain different cis-regulatory elements, which are involved in developmental, hormonal, and stress responses, and may be closely related to their diverse regulatory functions. In addition, collinearity analysis showed that the expansion of the SsMYB gene family occurred mainly through segmental duplications. Under drought conditions, SsMYB genes showed diverse expression patterns, which varied at different time points. Interaction networks of 74 SsMYB genes were predicted based on motif binding sites, expression correlations, and protein interactions. Heterologous expression showed that SsMYB8, SsMYB15, and SsMYB64 all significantly enhanced the drought tolerance of yeast cells. Meanwhile, the subcellular localization of all three genes is in the nucleus. Overall, this study provides new insights into the evolution and function of MYB genes and provides valuable candidate genes for breeding efforts in Sudan grass.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas
    Wang, Zhanjun
    Zhu, Jin
    Yuan, Wenya
    Wang, Ying
    Hu, Peipei
    Jiao, Chunyan
    Xia, Haimeng
    Wang, Dandan
    Cai, Qianwen
    Li, Jie
    Wang, Chenchen
    Zhang, Xie
    Chen, Yansong
    Wang, Zhaoxia
    Ou, Zulan
    Xu, Zhongdong
    Shi, Jisen
    Chen, Jinhui
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 181 : 1207 - 1223
  • [32] Genome-Wide Analysis of MYB Genes in Primulina eburnea (Hance) and Identification of Members in Response to Drought Stress
    Zhang, Jie
    Zhang, Yi
    Feng, Chen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (01)
  • [33] Genome-wide identification of bZIP transcription factors and their expression analysis in Platycodon grandiflorus under abiotic stress
    Wang, Zhen
    Wang, Panpan
    Cao, Huiyan
    Liu, Meiqi
    Kong, Lingyang
    Wang, Honggang
    Ren, Weichao
    Fu, Qifeng
    Ma, Wei
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [34] Genome-wide identification of soybean WRKY transcription factors in response to salt stress
    Yu, Yanchong
    Wang, Nan
    Hu, Ruibo
    Xiang, Fengning
    SPRINGERPLUS, 2016, 5
  • [35] Genome-wide identification of bZIP transcription factors and their responses to abiotic stress in celery
    Yang, Qing-Qing
    Feng, Kai
    Xu, Zhi-Sheng
    Duan, Ao-Qi
    Liu, Jie-Xia
    Xiong, Ai-Sheng
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2019, 33 (01) : 707 - 718
  • [36] Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress
    Mao, Ke
    Dong, Qinglong
    Li, Chao
    Liu, Changhai
    Ma, Fengwang
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [37] Genome-Wide Characterization and Expression Analyses of Pleurotus ostreatus MYB Transcription Factors during Developmental Stages and under Heat Stress Based on de novo Sequenced Genome
    Wang, Lining
    Gao, Wei
    Wu, Xiangli
    Zhao, Mengran
    Qu, Jibin
    Huang, Chenyang
    Zhang, Jinxia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (07)
  • [38] Genome-wide identification and characterization of GRAS transcription factors in tomato (Solanum lycopersicum)
    Niu, Yiling
    Zhao, Tingting
    Xu, Xiangyang
    Li, Jingfu
    PEERJ, 2017, 5
  • [39] Genome-wide identification, characterization, and expression analysis of CCT transcription factors in poplar
    Chen, Hao
    Zhang, Shuwen
    Du, Kang
    Kang, Xiangyang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 204
  • [40] Genome-Wide Identification, Characterization and Expression Analysis of TCP Transcription Factors inPetunia
    Zhang, Shuting
    Zhou, Qin
    Chen, Feng
    Wu, Lan
    Liu, Baojun
    Li, Fei
    Zhang, Jiaqi
    Bao, Manzhu
    Liu, Guofeng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (18) : 1 - 24