Genome-Wide Identification and Characterization of MYB Transcription Factors in Sudan Grass under Drought Stress

被引:0
|
作者
Liu, Qiuxu [1 ]
Xu, Yalin [1 ]
Li, Xiangyan [1 ]
Qi, Tiangang [1 ]
Li, Bo [1 ]
Wang, Hong [1 ]
Zhu, Yongqun [1 ]
机构
[1] Sichuan Acad Agr Sci, Inst Agr Resources & Environm, Chengdu 610066, Peoples R China
来源
PLANTS-BASEL | 2024年 / 13卷 / 18期
关键词
Sudan grass; drought stress; genome-wide analysis; MYB transcription factors; FUNCTIONAL-ANALYSIS; PROTEIN; ARABIDOPSIS; EXPRESSION; ENCODES; GENES; SEQUENCE; DATABASE; QUALITY; DREB2A;
D O I
10.3390/plants13182645
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sudan grass (Sorghum sudanense S.) is a warm-season annual grass with high yield, rich nutritional value, good regeneration, and tolerance to biotic and abiotic stresses. However, prolonged drought affects the yield and quality of Sudan grass. As one of the largest families of multifunctional transcription factors in plants, MYB is widely involved in regulating plant growth and development, hormonal signaling, and stress responses at the gene transcription level. However, the regulatory role of MYB genes has not been well characterized in Sudan grass under abiotic stress. In this study, 113 MYB genes were identified in the Sudan grass genome and categorized into three groups by phylogenetic analysis. The promoter regions of SsMYB genes contain different cis-regulatory elements, which are involved in developmental, hormonal, and stress responses, and may be closely related to their diverse regulatory functions. In addition, collinearity analysis showed that the expansion of the SsMYB gene family occurred mainly through segmental duplications. Under drought conditions, SsMYB genes showed diverse expression patterns, which varied at different time points. Interaction networks of 74 SsMYB genes were predicted based on motif binding sites, expression correlations, and protein interactions. Heterologous expression showed that SsMYB8, SsMYB15, and SsMYB64 all significantly enhanced the drought tolerance of yeast cells. Meanwhile, the subcellular localization of all three genes is in the nucleus. Overall, this study provides new insights into the evolution and function of MYB genes and provides valuable candidate genes for breeding efforts in Sudan grass.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Genome-wide Analysis of bZIP Transcription Factors in wheat and Functional Characterization of a TabZIP under Abiotic Stress
    Agarwal, Preeti
    Baranwal, Vinay Kumar
    Khurana, Paramjit
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [42] Genome-wide Analysis of bZIP Transcription Factors in wheat and Functional Characterization of a TabZIP under Abiotic Stress
    Preeti Agarwal
    Vinay Kumar Baranwal
    Paramjit Khurana
    Scientific Reports, 9
  • [43] Genome-Wide Identification of WRKY Transcription Factors in the Asteranae
    Guo, Hongyu
    Zhang, Yantong
    Wang, Zhuo
    Lin, Limei
    Cui, Minghui
    Long, Yuehong
    Xing, Zhaobin
    PLANTS-BASEL, 2019, 8 (10):
  • [44] Genome-wide identification and expression analysis of calmodulin-binding transcription activator genes in banana under drought stress
    Meer, Laraib
    Mumtaz, Sana
    Labbo, Abdullahi Muhammad
    Khan, Muhammad Jawad
    Sadiq, Irfan
    SCIENTIA HORTICULTURAE, 2019, 244 : 10 - 14
  • [45] Genome-Wide Identification and Analysis of MYB Transcription Factor Family in Hibiscus hamabo
    Liu, Dina
    Gu, Chunsun
    Fu, Zekai
    Wang, Zhiquan
    PLANTS-BASEL, 2023, 12 (07):
  • [46] Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum
    Li, Zhenjun
    Peng, Rihe
    Tian, Yongsheng
    Han, Hongjuan
    Xu, Jing
    Yao, Quanhong
    PLANT AND CELL PHYSIOLOGY, 2016, 57 (08) : 1657 - 1677
  • [47] Comprehensive Genome-Wide Analyses of Poplar R2R3-MYB Transcription Factors and Tissue-Specific Expression Patterns under Drought Stress
    Zhang, Xueli
    Wang, Haoran
    Chen, Ying
    Huang, Minren
    Zhu, Sheng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [48] Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance
    Ma, Yitong
    Zhai, Qingyan
    Liu, Zhipeng
    Liu, Wenxian
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 220
  • [49] Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley
    Qiu, Cheng-Wei
    Liu, Li
    Feng, Xue
    Hao, Peng-Fei
    He, Xiaoyan
    Cao, Fangbin
    Wu, Feibo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (08)
  • [50] Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering
    Guorui Wang
    Zhen Yuan
    Pengyu Zhang
    Zhixue Liu
    Tongchao Wang
    Li Wei
    Physiology and Molecular Biology of Plants, 2020, 26 : 705 - 717