Bidirectional S-bridge coordination in the magnetic Au/FeOxSy catalyst for the catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid

被引:0
|
作者
Ruan, Yu [1 ]
Wu, Shaoyi [1 ]
Lu, Yingxin [1 ]
Xu, Tiefeng [1 ,2 ]
Chen, Wenxing [1 ,2 ]
Lu, Wangyang [1 ,2 ]
机构
[1] Zhejiang Sci Tech Univ, State Key Lab Biobased Fiber Mat, Hangzhou 310018, Peoples R China
[2] Zhejiang Prov Innovat Ctr Adv Text Technol, Shaoxing 312000, Peoples R China
关键词
SELECTIVE OXIDATION; AEROBIC OXIDATION; OXIDE; ADSORPTION; CHEMICALS; AU; PD;
D O I
10.1039/d4ta09277e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is a promising approach for producing renewable biodegradable plastics. However, thus far, the development of catalytic oxidation processes operating under mild conditions and the design of highly stable catalysts have been challenging. Herein, the magnetic catalyst Au/FeOxSy was synthesised by doping S into the Fe/Au bimetallic structure. The reaction was conducted in water at 60 degrees C under air and atmospheric pressure, achieving 100% conversion of HMF and a FDCA yield of 98.5%. The catalytic performance of S-doping Au/FeOx was 4.73 times greater than that of undoped Au/FeOx under the same conditions. Furthermore, the catalyst demonstrated excellent cycling stability, with the FDCA yield maintained above 93% after at least 30 cycles. The introduction of S altered the electronic configuration of Au through the formation of Au-S bonds, thereby enhancing electron mobility and catalytic activity. Additionally, the interaction of S with FeOx led to the formation of Fe-O-S bonds, which fortified the structure of the catalyst and ensured prolonged cycling stability. Thus, this study effectively converted HMF to FDCA under mild conditions through S incorporation, offering a novel approach for preparing metal catalysts and laying a robust foundation for utilising FDCA as a sustainable alternative to terephthalic acid in bio-based polyester production.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China Chemistry, 2017, 60 : 950 - 957
  • [22] Chemocatalytic Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic Acid Over Nickel Cobalt Oxide
    Prasad, Shivshankar
    Kumar, Ajay
    Dutta, Suman
    Ahmad, Ejaz
    CHEMCATCHEM, 2024, 16 (20)
  • [23] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Zheng, Lufan
    Zhao, Junqi
    Du, Zexue
    Zong, Baoning
    Liu, Haichao
    SCIENCE CHINA-CHEMISTRY, 2017, 60 (07) : 950 - 957
  • [24] A Highly Efficient Nickel Phosphate Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Xu, Xuli
    Song, Xiaojie
    Liu, Xiaohui
    Wang, Haifeng
    Hu, Yongfeng
    Xia, Jie
    Chen, Jiacheng
    Shakouri, Mohsen
    Guo, Yong
    Wang, Yanqin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (17) : 5538 - 5547
  • [25] Simulation and economic analysis of 5-hydroxymethylfurfural conversion to 2,5-furandicarboxylic acid
    Triebl, Christoph
    Nikolakis, Vladimiros
    Ierapetritou, Marianthi
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 52 : 26 - 34
  • [26] Platinum deposited on cerium coordination polymer for catalytic oxidation of hydroxymethylfurfural producing 2,5-furandicarboxylic acid
    Gong, Wei
    Zheng, Kunkun
    Ji, Peijun
    RSC ADVANCES, 2017, 7 (55): : 34776 - 34782
  • [27] Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by modification of the crystalline structure of MnO2 for catalytic purposes
    Liao, Wenbo
    Yang, Shibo
    Liu, Yadong
    Yin, Qing
    Tang, Xing
    Lin, Lu
    Sun, Yong
    MOLECULAR CATALYSIS, 2025, 578
  • [28] Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid
    Totaro, Grazia
    Sisti, Laura
    Marchese, Paola
    Colonna, Martino
    Romano, Angela
    Gioia, Claudio
    Vannini, Micaela
    Celli, Annamaria
    CHEMSUSCHEM, 2022, 15 (13)
  • [29] Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural
    Zuo, Xiaobin
    Venkitasubramanian, Padmesh
    Martin, Kevin J.
    Subramaniam, Bala
    CHEMSUSCHEM, 2022, 15 (13)
  • [30] Advances in the Energy-Saving Electro-Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Ren, Yujie
    Fan, Shilin
    Yu, Xiao
    Shi, Shaoqi
    Wang, Jinggang
    Zeng, Jia
    Zhang, Jian
    Chen, Chunlin
    ADVANCED SUSTAINABLE SYSTEMS, 2025,