Chemocatalytic Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic Acid Over Nickel Cobalt Oxide

被引:2
|
作者
Prasad, Shivshankar [1 ]
Kumar, Ajay [1 ]
Dutta, Suman [1 ]
Ahmad, Ejaz [1 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Chem Engn, GreenCat Lab, Dhanbad 826004, India
关键词
2,5-furandicarboxylic acid; 5-hydroxymethylfurfural; Lattice oxygen; Oxygen mobility; Tert-butyl hydroperoxide; SELECTIVE AEROBIC OXIDATION; CATALYSTS; SUPPORT; BASE; MICROWAVE; BIOMASS; PHASE;
D O I
10.1002/cctc.202400973
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present study reports the synthesis, characterization, and application of NiCo bimetallic catalysts to produce 2,5-furandicarboxylic acid (FDCA) via the oxidation of bio-renewable 5-hydroxymethylfurfural (HMF). FDCA is a biopolymer precursor and a potential replacement for terephthalic acid (TPA). The catalysts were synthesized via the co-precipitation method in different molar ratios of NiCo, followed by calcination in a muffle furnace. As a result, the complete conversion of HMF and a maximum 84.89 % FDCA yield was measured at 50 degrees C in 50 minutes in the presence of NiCo(3 : 1) catalyst. In addition, effect reaction parameters, including catalyst amount, temperature, time, base, and oxidant amount on the FDCA yield, were studied, and the process was optimized. The NiCo(3 : 1) catalyst showed a negligible loss in activity for at least five cycles. The higher catalytic activity and stability are attributed to the synergistic effect of bimetallic catalysts, such as higher lattice oxygen. Accordingly, the catalyst was characterized using BET, XRD, H2-TPR, CO2-TPD, HR-TEM, and XPS to correlate their properties and activity. The reaction products were analyzed quantitatively using HPLC and qualitatively using HR-MS. The oxidation reaction of 5-hydroxymethylfurfural has been carried out using bimetallic nickel cobalt catalyst to produce into 2,5-furandicarboxylic acid (FDCA). It is observed that higher lattice oxygen and oxygen mobility of bimetallic catalysts are responsible for better FDCA yield. Maximum 84.9 % FDCA yield is measured using NiCo (3 : 1) catalyst and tert-butyl hydroperoxide oxidant at 50 degrees C in 50 minutes. image
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Electrocatalytic Oxidation of 5-Hydroxymethylfurfural into the Monomer 2,5-Furandicarboxylic Acid using Mesostructured Nickel Oxide
    Holzhaeuser, Fabian Joschka
    Janke, Tobias
    Oeztas, Fatma
    Broicher, Cornelia
    Palkovits, Regina
    ADVANCED SUSTAINABLE SYSTEMS, 2020, 4 (10)
  • [2] Investigation of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Taitt, Brandon
    Nam, Do-Hwan
    Choi, Kyoung-Shin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [3] Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Wang, Wei
    Kong, Fanhao
    Zhang, Zhe
    Yang, Lan
    Wang, Min
    DALTON TRANSACTIONS, 2021, 50 (31) : 10922 - 10927
  • [4] A Highly Efficient Nickel Phosphate Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Xu, Xuli
    Song, Xiaojie
    Liu, Xiaohui
    Wang, Haifeng
    Hu, Yongfeng
    Xia, Jie
    Chen, Jiacheng
    Shakouri, Mohsen
    Guo, Yong
    Wang, Yanqin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (17) : 5538 - 5547
  • [5] A Comparative Study of Nickel, Cobalt, and Iron Oxyhydroxide Anodes for the Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Taitt, Brandon J.
    Nam, Do-Hwan
    Choi, Kyoung-Shin
    ACS CATALYSIS, 2019, 9 (01): : 660 - 670
  • [6] Selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over nanojunctions of cobalt-ceria binary oxide in water
    Chen, Aicheng
    Li, Tingting
    Zhang, Qian
    Zhu, Hu
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (09) : 2954 - 2961
  • [7] Microwave-Assisted Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid over CuCo Oxide
    Prasad, Shivshankar
    Kumar, Ajay
    Dutta, Suman
    Ahmad, Ejaz
    CHEMPLUSCHEM, 2025, 90 (01):
  • [8] Kinetic Modeling of Homogenous Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Wei, Zange
    Li, Wenhao
    Yuan, Fang
    Sun, Weizhen
    Zhao, Ling
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (50) : 18352 - 18361
  • [9] On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts
    Davis, Sara E.
    Zope, Bhushan N.
    Davis, Robert J.
    GREEN CHEMISTRY, 2012, 14 (01) : 143 - 147
  • [10] The Preparation of Biobased 2,5-Furandicarboxylic Acid Derived from the Oxidation of 5-Hydroxymethylfurfural Over Potassium Ferrate
    Zhang, Junhua
    Xie, Wenxing
    Li, Junke
    Liang, Qidi
    Guo, Daliang
    Tang, Yanjun
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2018, 12 (02) : 161 - 167